From falsification to generating an alternative hypothesis: Exploring the role of the new-perspective hypothesis in successful 2-4-6 task performance

Yunn-Wen Lien and Wei-Lun Lin

Thinking & Reasoning (2011), 17(2), 105-136

- ▶ 科学的発見,規則発見における要因
 - 反証 (Popper, 1959)
 - 代替(対立)仮説 (e.g., Kuhn, 1970; Platt, 1964)

* THE ROLE OF DISCONFIRMATORY EVIDENCE

- ▶ 反証アプローチは重要だが、なかなか行われない
- ▶ 2-4-6 課題 (Wason, 1960, 1966)
 - confirmation bias
 - 仮説に沿う組のテスト = positive test (H+) が多い
 - ・ 反証を求めるテスト = negative test (H) は行われない

***** VARIOUS DEFINITIONS OF DISCONFIRMATORY INFORMATION

- ▶ 反証の定義
 - H[•]の頻度

(e.g., Gorman & Gorman, 1984; Gorman, Stafford, & Gorman, 1987; Green, 1990; Kareev, Halberstadt, & Shafir, 1993; Klayman & Ha, 1989; Mynatt, Doherty, & Tweney, 1977; Penner & Klahr, 1996; Tweney et al., 1980; Wason, 1960)

- T⁻ ("no" feedback) の頻度

(e.g., Gorman, 1986; Gorman, Gorman, Latta, & Cunningham, 1984)

- ▶ これらを増加させても、パフォーマンスは促進されない(Poletiek, 2001)
 - 定義が必ずしも反証となっていない

(e.g., Klayman & Ha, 1987; Poletiek, 1996; Wetherick, 1962)

- ▶ Figure 1 より
 - 現在の仮説を Hi set, 見つけるべき規則を T set とする
 - 現在の仮説を確かめるために
 - E1(H-)を検証 → no(T-) = 確証
 - · E2(H-)を検証 → yes(T+) = 反証

Figure 1. Illustration of various definitions of disconfirmatory information, where the H_i set is the set of instances consistent with a reasoner's ith hypothesis, the H_i' set is the set of instances consistent with a reasoner's alternative hypothesis, which is generated concurrently with the ith hypothesis, and the T set is the set of instances consistent with the correct rule. E1 to E4 represent four instances relevant to the four types of disconfirmation measures.

E3(H+)を検証 → no(T-) = 反証

- ▶ H(仮説)とT(ターゲット)の関係で定義する(H-T反証情報)
- diagnostic testing strategy (e.g., Bassok & Trope, 1984; Skov & Sherman, 1986)
 - 対立仮説をたて、どちらかの仮説を棄却できるテストを行う
- ▶ H-H'反証情報として検証

***** THE ROLE OF THE ALTERNATIVE HYPOTHESIS

▶ 規則発見の成功は仮説の生成により説明される

(Adsit & London, 1997; Kuhn, 1970; Lakatos, 1970; Oaksford & Chater, 1994; Platt, 1964)

dual-goal paradigm

(Gale & Ball, 2006, 2009; Tweney et al., 1980; Vallee-Tourangeau, Austin, & Rankin, 1995; Wharton, Cheng, & Wickens, 1993)

- 2つの規則を探させることによる発見の促進
- triple heterogeneity account (Vallee-Tourangeau et al., 1995)
 - ・ 様々な組をテストすることが発見に導く
 - ・ 幅広い仮説を探索したことの結果

← 直接的に調べられていない

▶ 仮説の探索の幅を調べる新しいフレームワークが必要

* DISTINGUISHING NEW-PERSPECTIVE AND SAME-PERSPECTIVE HYPOTHESES

- ▶ 仮説の質を判断する (Lakatos, 1970; Kuhn, 1970)
- ▶ Chi (1997)の ontological category を参考にする
 - 存在を3つのカテゴリーを根幹とする階層木と枝として表現
 - ・ 1 つの木の中の概念変化 "weak conceptual change"
 - 異なる木の間の概念変化 "radical conceptual change"
- ▶ 100 名の実験から得られた仮説を 17 の主な仮説に分類 (Appendix A)
 - 17 の仮説を階層木に配置し仮説構造を構築 (Figure 2)
 - ・ 4つのカテゴリー
 - · 2つのタイプ
- ▶ 改訂された仮説が
 - 同じ枝の中であれば same perspective hypothesis
 - 異なる枝から概念を取り込んでいれば new-perspective hypothesis
- ▶ 洞察問題の解決には異なる視点をとることが重要 (e.g., Dominowski, 1995; Ohlsson, 1984)
 - 2-4-6 課題は洞察的

(Dominowski, 1995; Lin, Lien, & Jen, 2005; Oaksford & Chater, 1994; Tukey, 1986; Tweney et al., 1980; Vallee-Tourangeau & Payton, 2008; Vartanian, Martindale, & Kwiatkowski, 2003)

- ▶ 仮説
 - new-perspective hypothesis の生成が 2-4-6 課題における規則発見の可能性を増 加させるだろう

***** EXPERIMENT 1

- ▶ instruction paradigm の利用 (e.g., Gorman & Gorman, 1984; Tweney et al., 1980)
 - 反証を多くするため
 - negative test が役に立つことを教示する
- ▶ 3つのゴール
 - H-T, H-H'反証情報の役割の追試
 - 対立仮説の量とタイプの影響の検討
 - 発見者と未発見者の反証後の仮説の改訂の比較

2012/02/13 担当:松室

APPENDIX A

The 17 hypotheses used to form the basic hypothesis structure for the standard number version of the 2-4-6 problem used in Experiment 1.

1.	Three evens
2.	The 1st number < the 2nd number < the 3rd number
3.	Arithmetic series (different by a certain number)
4.	Three different numbers
5.	Three numbers with multiple relationships between them
6.	Three numbers all greater than a certain number
7.	Three numbers all evens or all odds
8.	Three numbers all smaller than a certain number
9.	Three integers
10.	Three real numbers
11.	The first number the smallest
12.	Three single-digit numbers
13.	The 1st number $+$ the 2nd number $=$ the 3rd number
14.	Adding three numbers equals a certain number
15.	Three rational numbers
16.	Multiplying three numbers equals a certain number
17.	Three numbers with a common divisor or a common multiple

Figure 2. The basic hypothesis structure and examples of hypothesis modification in the 2-4-6 task.

♦ Method

- \diamond Participants and design
 - ▶ 40名の学部生
 - 統制条件
 - H·教示条件
 - ・ ネガティブテストストラテジー使用の促進

♦ Materials and procedures

- 標準的な 2-4-6 課題を遂行
- ▶ アンサーシートに以下の情報を書き込む
 - テストする事例
 - その事例をテストする理由
 - 実験者によるフィードバック
 - 現在の最高の仮説
- ▶ 全12回のテスト (e.g., Gale & Ball, 2009; Klayman & Ha, 1989)
- ▶ H:教示条件では、ネガティブテストをするように教示

\diamond Dependent measurements

- ► Testing strategies
 - 仮説に沿う組のテスト H⁺ test
 - 仮説に沿わない組のテスト H⁻ test
 - 現在の仮説と異なる仮説の組のテスト dual-hypothesis test
- Disconfirmatory information
 - H-T 反証情報
 - ・ H+ test で"no"
 - ・ H⁻ test で"yes"
 - H-H'反証情報
- Kinds of hypotheses generated
 - new-perspective 異なる枝から新しい概念を取り込んでいる
 - same-perspective 同じ枝に属し,他の枝から新しい概念を追加しない
 - implausible 仮説が現在までの情報と一致していない

- \diamond Results
- \diamond Effects of falsification instructions
 - ▶ ネガティブテスト(H-)の量
 - 統制条件 (3.7 回, SD = 2.1) < H:教示条件 (2.1 回, SD = 1.8)
 - t (38) = 2.56, p < .05
 - ► H-T 反証情報の量
 - 統制条件 (M = 1.60, SD = 2.1) < H·教示条件 (M = 2.05, SD = 1.7)
 - 有意差なし t (38) = 0.74, p > .1
 - ▶ H-H'反証情報の量
 - 統制条件 (3.55 ± 2.5) = H⁻教示条件 (5.1 ± 3.3)
 - t(38) = 1.66, p > .1
 - ▶ 規則発見率
 - 統制条件 (35%) = H·教示条件 (40%)
 - t (38) = 0.74, p > .1
 - ▶ 以降の分析では,発見者(15名)未発見者(25名)に分けて分析
- Roles of disconfirmatory information and types of alternative hypotheses (Table 1)
 - ▶ H-T 反証情報の量, H-H'反証情報の量

- どちらも発見 = 未発見 (*t*(38) = 0.66, *p* > .1; *t*(38) = -0.57, *p* > .1)

(Table 2)

- ▶ new-perspective hypothesis の数
 - 発見 > 未発見 (t (38) = 4.08, p < .01)
- ▶ その他のタイプは有意差なし
 - 全仮説の量 (t(37.2) = 0.58, p > .1)
 - same perspective hypothesis (t (37.0) = -0.77, p > .1)
 - implausible hypothesis (t (37.0) = -0.80, p > .1)
- \diamond Relationship between disconfirmation and hypothesis generation
 - ▶ H-T 反証情報の後に生成した仮説のタイプ (Figure 3)
 - new-perspective hypothesis
 - 発見 (M = 1.00, SD = 1.07) > 未発見 (M = 0.44, SD = 0.65)
 - t(38) = 2.07, p < .05

TABLE 1 Means (SDs) of two types of disconfirmatory information for successful and unsuccessful participants, Experiment 1

	Successful $(n=15)$	Unsuccessful $(n=25)$
H-T disconfirmatory information	1.60 (1.5)	1.96 (2.2)
H-H' disconfirmatory information	4.73 (2.7)	4.08 (3.2)

Numbers in parentheses are SDs.

TABLE 2

Means (*SD*s) of three types of hypothesis and total number of hypotheses generated for successful and unsuccessful participants, Experiment 1

Hypothesis	Successful $(n = 15)$	Unsuccessful $(n=25)$
New-perspective hypotheses	3.93 (0.7)	2.76 (1.0)**
Same-perspective hypotheses	3.73 (1.8)	4.28 (2.6)
Implausible hypotheses	0.20 (0.4)	0.40 (0.9)
Total number of hypotheses	7.93 (2.0)	7.48 (2.9)

Numbers in parentheses are *SD*s. **p < .01.

Figure 3. The mean number of new- and same-perspective hypotheses generated after receiving disconfirmatory information by successful participants (n = 15) and unsuccessful participants (n = 25) in Experiment 1.

- same-perspective hypothesis
 - 発見 (0.53±0.92) = 未発見 (1.36±2.08)
 - t(38) = -1.45, p > .1
- ▶ 発見
 - new-perspective = same-perspective (F(1, 38) = 0.85, p > .1)

TABLE 3

Means (*SD*s) of two types of dual-hypothesis test (the fourth definition of disconfirmatory information) for successful and unsuccessful participants, standard condition, Experiment 1

	Successful $(n=7)$	Unsuccessful $(n=13)$
New-perspective dual tests	2.43 (1.0)	1.31 (1.1)*
Same-perspective dual tests	3.86 (2.8)	3.15 (2.4)

Numbers in parentheses are SDs. p < .05.

- ▶ 未発見
 - new-perspective < same-perspective (F(1, 38) = 5.52, p < .05)
- ▶ H-H'反証情報について
 - 対立仮説が new-perspective hypothesis
 - 対立仮説が same-perspective hypothesis
- ▶ 統制条件のみで比較(Table 3)
 - 教示により dual hypothesis test の機会が少なくなる
- new-perspective dual test
 - 発見 > 未発見 (*t*(18) = 2.24, *p* < .05)
- same-perspective dual test
 - 発見 = 未発見 (*t*(18) = 0.59, *p* > .1)
- ▶ 判別分析
- ▶ 反証の後/確証の後/dual-test における new-perspective hypothesis の回数により発見/未発見がどれほど予測されるか?
 - 72.5%の参加者の結果がこれらの変数から予測できる
 - ・ 確証の後 coefficient = 0.29
 - 反証の後 1.32 (p < .05)
 - · dual-test 1.25 (p < .05)
 - same-perspective hypothesis は予測しない
- ♦ Discussion
 - ▶ 4つの発見
 - 発見者のほうが new-perspective hypothesis を多く生成した

- ・ H-T, H-H'反証情報や仮説の数は関係ない
- 発見者は反証を得た後に new-perspective hypothesis を生成
- 対立仮説が new-perspective hypothesis であるほうが発見へ至りやすい
- H-T 反証情報の後の new-perspective hypothesis の数と dual-test における new-perspective hypothesis の数が発見の予測に寄与する

***** EXPERIMENT 2

- ▶ Chinese name version (Figure 4)を加えて追試 (Wu et al., 1998)
 - 3つの名前の規則性を考える
- ▶ 規則発見の難易度を操作
 - 最初の組を観察して生成される割合が (table 4)
 - \cdot 50% \rightarrow simple
 - \cdot 20% \rightarrow difficult
- ▶ simple では new-perspective hypothesis を余り必要としないだろう
- ♦ Method
- ♦ Participants
 - ▶ 80名の学部生
 - 4条件にランダム配置
- \diamond Design and materials
 - ▶ 参加者間2要因デザイン

黃小英, 蕭小紅, 藍小美

Figure 4. The three Chinese names given as the initial instance in the name-content condition in Experiment 2.

IABLE 4					
The correct rules	for the conditions	in Experiment 2			

	Number content	Name content
Simple	Arithmetic series 49%	Three-character names 53%
Difficult	Increasing numbers 19%	Names at least share one character 6%

The percentage listed below each rule indicates accessibility of the rule as determined by a group of 37 participants given the initial instances.

APPENDIX B

The basic hypothesis structure for the name content of the 2-4-6 task.

- 難易度 (simple vs difficult)
- 内容 (数字 vs 名前)
- ♦ Procedures
 - ▶ 実験1と同様
- ♦ Dependent measurements
 - ▶ 実験1と同様
 - ▶ 名前課題については Appendix B を参照
- \diamond Results
- \diamond Roles of disconfirmatory information and types of alternative hypotheses.

(Table 5)

TABLE 5

Means (*SD*s) of disconfirmatory information and kinds of hypothesis generated between successful and unsuccessful participants across number and name content versions, difficult condition, Experiment 2

	Successful $(n=15)$	Unsuccessful $(n=25)$
H-T disconfirmatory information	0.60 (1.1)	1.24 (1.4)
H-H' disconfirmatory information	6.53 (2.5)	5.00 (3.1)
New-perspective hypotheses	4.73 (1.4)	3.36 (1.3)**
Same-perspective hypotheses	4.20 (1.4)	4.32 (2.9)
Total number of hypotheses	9.13 (2.3)	8.24 (2.7)

Numbers in parentheses are *SD*s. **p < .01.

- ▶ new-perspective hypothesis の数のみ有意差あり
 - 発見 > 未発見 (F(1, 36) = 9.94, MSE = 59.2, p < .01)
- その他の結果に発見/未発見の有意差なし
 - H-T 反証情報の量 (F(1, 36) = 0.98, MSE = 58.7, p > .1)
 - H-H'反証情報の量 (F(1, 36) = 2.55, MSE = 290.0, p > .1)
 - same-perspective hypothesis (F(1, 36) = 0.01, MSE = 212.9, p > .1)
 - 全仮説の量 (F(1, 36) = 1.07, MSE = 234.9, p > .1)
- ▶ 課題内容による違いはない(F(1, 36) = 1.74, MSE = 59.2, p > .1)
- ▶ 課題の主効果
- ▶ new-perspective hypothesis の数
 - 名前 (*M*=4.25, *SD*=1.80) > 数字課題 (*M*=3.50, *SD*=0.95)
 - F(1, 36) = 3.84, MSE = 59.2, p = .05
- ► H-T 反証情報の量
 - 名前 (*M*=0.60, *SD*=1.4) < 数字課題 (*M*=1.40, *SD*=1.2)
 - F(1, 36) = 4.38, MSE = 58.7, p < .05
- \diamond Relationship between disconfirmation and hypothesis generation.
 - ▶ H-T 反証情報の後に生成した仮説のタイプ
 - new-perspective hypothesis
 - 発見 (0.53±0.92) = 未発見 (0.32±0.56)
 - F(1, 36) = 0.004, MSE = 14.8, p > .1
 - same-perspective hypothesis
 - 発見 (0.27±0.49) = 未発見 (0.56±0.77)
 - F(1, 36) = 1.79, MSE = 17.1, p > .1
 - ▶ same perspective hypothesis における内容の主効果
 - 名前 (M = 0.15, SD = 0.5) < 数字課題 (M = 0.75, SD = 0.7)
 - F(1, 36) = 8.39, MSE = 13.7, p < .01
 - ▶ new-perspective hypothesis における発見と内容の交互作用(傾向)
 - F(1, 36) = 3.58, MSE = 12.9, p = .067
 - ▶ 課題内容ごとの分析 (Table 6)
 - ▶ 数字課題

TABLE 6

Mean number (*SD*s) of new- and same-perspective hypotheses generated after receiving disconfirmatory information by successful and unsuccessful participants, number-content condition (A) and name-content condition (B), Experiment 2

		Numbe	Number content			Name	content
Α		Successful $(n=7)$	Unsuccessful (n = 13)	В	В	Successful (n=8)	Unsuccessful (n = 12)
	NPH SPH	0.71 (0.95) 0.57 (0.54)	0.31 (0.48) 0.85 (0.80)		NPH SPH	0 (0) 0 (0)	0.33 (0.65) 0.25 (0.62)

Т	-Δ	R	Ľ	F	7
I	А	D	ᄂ		1

Means (*SD*s) of two types of dual-hypothesis tests (the fourth definition of disconfirmatory information) for successful and unsuccessful participants across number and name-content versions, difficult condition, Experiment 2

	Successful $(n = 15)$	Unsuccessful $(n=25)$
New-perspective dual tests	2.60 (1.6)	1.56 (1.2)*
Same-perspective dual tests	3.93 (1.6)	3.44 (2.7)

Numbers in the parentheses are SDs.

*p < .05.

- new-perspective hypothesis
 - 発見 (M = 0.85, SD = 0.80) > 未発見 (M = 0.31, SD = 0.48)
 - F(1, 72) = 3.93, p = .05
- ▶ 名前課題に有意差なし

•

- ▶ H-H'反証情報について (Table 7)
- new-perspective dual test
 - 発見 > 未発見 (F(1, 36) = 5.30, MSE = 62.5, p < .05)
- ▶ same-perspective dual test
 - 発見 = 未発見 (F(1, 36) = 1.13, MSE = 211.1, p > .1)
- ▶ 発見と課題の交互作用なし (F(1, 36) = 2.45, MSE = 62.5, p > .1)
- 判別分析は数字課題のみで行う
 - 名前課題には反証情報の受け取りに違いがあるため
 - new-perspective hypothesis の数のみ成功を予測(70%)
- 名前課題で同様の分析

Figure 5. The interaction between task success and difficulty level on the number of new-perspective hypotheses generated in Experiment 2.

- dual-test における new-perspective hypothesis は成功を有意に予測する
- (coefficients = 0.87; F(1, 18) = 6.97, p < .05)
- 反証後の new-perspective hypothesis は成功を有意に予測しない (coefficients = -0.36, *p* > .1)

♦ Comparison of different difficulty levels

- ▶ 発見率
 - simple (60%) > difficult (37.5%) ($\chi^2 = 4.05, p < .05$)
- ▶ new-perspective hypothesis の数において 2 (難易度 simple vs difficult) × 2 (成功 発見 vs 未発見) の ANOVA (Figure 5)
- ▶ 交互作用 (F(1, 76) = 4.53, MSE = 97.7, p < .05)
 - difficult 条件
 - 発見 > 未発見
 - simple 条件
 - · 発見 = 未発見
 - → 課題の難易度により new-perspective hypothesis は異なる役割を果たす
- ▶ 課題の主効果
 - difficult (M = 3.88, SD = 1.47) > simple (M = 3.40, SD = 0.90)
 - F(1, 76) = 6.66, MSE = 97.7, p < .05

♦ Discussion

- ▶ 4つの結果
 - 数字課題の new-perspective hypothesis の数のみ発見/未発見により差が見られた
 - 発見者は dual-hypothesis test で対立仮説に new-perspective hypothesis を生成
 - 数字課題において、未発見者は H-T 反証後の new-perspective hypothesis の生
 成量が same-perspective hypothesis に比べて少なかった
 - new-perspective hypothesis の数が発見/未発見を予測する
 - · 特に, dual-test 中が最も有効
- ▶ 名前課題
 - new-perspective hypothesis が多い
 - **H-T** 反証情報が少ない
- ▶ 仮説空間が異なっていたため
 - 数字課題 4 つに分かれる
 - 名前課題 7つに分かれる
- ▶ new-perspective hypothesis が作りやすい
 - dual-test を利用した
- ▶ 発見のスピード
 - 数字(6.4 試行, SD = 3.6) < 名前課題(7.3 試行, SD = 2.3) 有意差なし
 - 数字課題のほうが探索範囲が小さいため
- ▶ dual-test だけでは不十分 (Tweney et al., 1980)
 - 対立仮説が new-perspective hypothesis であることが重要
- ▶ 難易度の違いの影響
 - アクセスしやすい規則 (simple) で有れば new-perspective hypothesis は影響しない
- ▶ 発見のスピード
 - simple (4.8 試行, *SD* = 3.2) < difficult (6.9 試行, *SD* = 2.9)
 - t(37) = 72.0, p = .05

***** GENERAL DISCUSSION

- ▶ 発見/未発見の参加者の違いは new-perspective hypothesis の数の違い
- ▶ 反証の後, dual-test の対立仮説として生成されると効果的
- ▶ 発見の研究への拡張 (Reichenbach, 1938)
 - 仮説構造の質的側面に焦点を当てたフレームワークは仮説の改訂過程の研究に
 利用できる
 - heterogeneity theory (e.g., Vallee-Tourangeau et al., 1995) の拡張
 - 仮説の分類に広く利用できる
- ▶ 課題により new-perspective hypothesis の重要性は異なる
 - 発見が簡単なら重要性は減少する
 - 洞察的なときにはより重要
- ▶ 創造性の過程もあらわせる可能性がある

(e.g., Tukey, 1986; Tweney et al., 1980; Vartanian et al., 2003; Wagner, 1996; Wason, 1977)

- new-perspective hypothesis の生成は参加者の遠隔連想能力と正の相関がある
- ▶ 今後, dual process theory (e.g., Evans, 2003; Sloman, 1996; Stanovich & West, 2000) と関連させて考える必要がある