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Abstract

In this study, we selected medical image diagnosis as a task to investigate how
expertise influences the relations between perceptual and conceptual processing. In
an experiment, participants, namely five novices and five experts, made diagnoses
on thirteen CT images. We obtained two types of data concerning verbal protocols
and manipulating computational systems. The segments related to perceptual and
conceptual processing were extracted from these data, and the interrelations of the
two components were analyzed. Consequently, we confirmed three salient features
in the experts: (1) the experts verbalized more types of findings and more types
of hypotheses than novices; (2) the experts generated several hypotheses in the
early phases of the task; and (3) they newly verbalized many perceptual features
during conceptual activities, and verbalized conceptual words during perceptual
activities. These results suggest that expertise in medical image diagnosis involves
not only the development of both perceptual and conceptual processing, but also
the development of an ability to connect the two components.
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1 Introduction

Human cognitive systems consist chiefly of two components: one for perceptual
processing, which extracts information from the external world, and the other
for conceptual processing, which retrieves and uses knowledge in the memory.
Integration of the two components can be considered as a central foundation
of human cognition (e.g., Nisser, 1976; Simon and Lea, 1978).

This topic, which has been mainly discussed in the fields of cognitive sci-
ence and psychology, is beginning to become inseparable from the research
field of human-computer studies because recent developments in information
technology make it difficult to perform human cognitive tasks without compu-
tational devices. In a situation where one works with computational devices,
the connection between these two components provides the basis for interac-
tions between information presented by computational devices and knowledge
retrieved from a human memory system.

This paper addresses how perceptual and conceptual processing are related
to each other in a real-world cognitive task with computational devices. In
particular, we focused on expertise as a factor in this relationship because the
past studies repeatedly pointed out that expertise in a specialized field is one
of the most influential factors in the differences affecting human cognition.
We believe that investigations of the influence of expertise on the relations
between perceptual and conceptual processing provide basic data for future
developments of user interfaces tailored to individuals.

We chose medical image diagnosis (i.e., radiological diagnosis) as a task to
address the above questions. In this task, a physician makes a diagnosis while
viewing medical images such as radiographs, computed tomography (CT) im-
ages, or magnetic resonance imaging (MRI) images. We believe that the task
is suitable for investigating the question because it is a typical cognitive ac-
tivity involving human-computer interactions in which expertise influences
the two components (perceiving features from medical images and retrieving
physiological knowledge).

To clarify the goals of the present study, we briefly review (1) theoretical
studies on the relations between perceptual and conceptual processing, (2)
experimental studies on learning that alternates the relations of the two com-
ponents, and (3) experimental studies on medical image diagnosis.

∗ Corresponding author. Present address: School of Knowledge Science. Japan Ad-
vanced Institute of Sceience and Technology. 1-1 Asahidai, Nomi, Ishikawa, Japan.

Email address: j-morita@jaist.ac.jp (Junya Morita).
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1.1 Interactions of perceptual and conceptual processing

The relations between perceptual and conceptual processing have been widely
discussed in psychology and cognitive science. They have commonly acknowl-
edged the existence of mutual influence between the two components: the
bottom-up process in which perceptual processing drives conceptual process-
ing, and the top-down process, where conceptual processing drives perceptual
processing.

For example, Neisser (1976) proposed the perceptual cycle theory, the aim of
which was to combine the bottom-up and top-down aspects of human ac-
tivities, and explained human activities in a complex and dynamic context.
According to this theory, the human perceptual system is composed of an
iterative cyclic process comprising three activities: extracting features from
environments, remembering concepts (or schemata) from extracted features,
and searching features in environments.

The models of scientific discovery (e.g., Simon and Lea 1978) or abductive
reasoning (e.g., Johnson and Krems, 2001) also assume interactive cycles of
components as a basis of human cognition. For example, Simon and Lea (1978)
proposed the dual-space search model, which explored the interactions of data
search and hypothesis generation. The dual-space search model has so far
guided a large amount of studies employing computational and psychological
methods (e.g., Dunbar, 1993; Klar and Dunbar, 1988; Klar, 2000; Kulkarni
and Simon, 1988; Miwa 2004; Okada and Simon, 1997).

Related discussions can be found in the literature of cognitive architectures
(ACT-R: Anderson and Lebiere, 1998; CPM-GOMS: Gray et al., 1993; or
EPIC: Kieras and Meyer, 1997), which have recently been applied to complex
human behaviors with computational devices, such as the manipulation of a
modular phone, web-page searching, and flight operations (e.g., Anderson,et
al., 2004; Brumby and Howes, 2004; Byrne, 2001; Fu et al., 2004; Salvucci,
2005; Taatgen, 2005). These architectures implement not only traditional
modules of production systems but also perceptual modules to take exter-
nal information into the systems. The cognitive process represented by such
architectures is based on interactions between the perceptual and cognitive
modules.

1.2 Learning and development of expertise in other fields

Based on the above theories, many experimental studies have been conducted
to investigate the effects of learning on the relations of the two components.
These studies have repeatedly confirmed the shift from the top-down to bottom-
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up process as an effect of extensive training.

For instance, in the experiment conducted by Goldstone et al. (2000), sub-
jects were required to learn correspondences from subtle visual features with
conceptual categories. Through an extended period of training, the subjects
recieved a conceptual feedback, and began to react immediately to a per-
ceptual stimulus and to retrieve the category name directly. Such a learning
process, called perceptual learning, could be considered as the shift from the
top-down to the bottom up process.

Similar shifts have also been demonstrated in simulation studies which employ
ACT-R architecture dealing with complex manipulations of computational de-
vices. For example, Taatgen (2005) conducted a simulation study employing
ACT-R architecture on the Air Traffic Control task, in which a model is re-
quired to both detect planes in the radar screen and identify the types of
planes. In his study, the model learned the task through compiling declara-
tive knowledge into procedural production rules. After the compilation, the
model could directly evoke the production rules from the environment. Conse-
quently, the time required to accomplish the task decreased significantly. The
learning mechanism of ACT-R is characterized by shifts from the top-down
process, in which declarative knowledge controls the firing of production rules,
to the bottom-up process, in which production rules are directly evoked by
the environmental information.

In addition to the above laboratory and computer-simulation studies, there
are findings that confirmed the shift in the development of real-world expertise
(Chase and Simon, 1973; Dreyfus and Dreyfus, 1986; Larkin et al., 1980; Patel
and Groen, 1986).

For example, Larkin et al., (1980) investigated problem solving in physics,
and confirmed that experts used forward reasoning based on highly compiled
knowledge. In contrast, novices tended to use means-end analysis while fre-
quently verbalizing abstract goals. It was also confirmed that in the case where
the novices failed to solve the problem, they verbalized abstract physic laws
in the early phase of problem solving.

Furthermore, Patel and Groen (1986) investigated a process of clinical di-
agnosis. In their experiment, expert physicians read texts in which clinical
conditions of patients were described, and made a diagnosis on the patients.
As a result of their experiment, it was shown that the process of physicians
making an accurate diagnosis involved forward reasoning from findings to a
diagnosis. On the other hand, in cases where the physicians made an inaccu-
rate diagnosis, the process contained a backward reasoning strategy, beginning
with a high-level hypothesis. This study indicates negative relations between a
top-down process (i.e., means-end analysis strategy and backward reasoning)
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and final performance in a task.

1.3 Expertise in medical image diagnosis

As the previous subsection showed, it has been repeatedly confirmed that there
are the shifts from the top-down to the bottom-up process in the development
of expertise. However, in the area of medical image diagnosis, it has also been
confirmed that more complicated factors are involved in the development of
expertise. So far, many researchers have conducted studies to identify cognitive
factors in medical image diagnosis (see Woods, 1999a, 1999b, as reviews).

First, many researches have confirmed that expertise makes detection of ab-
normal regions fast and accurate. For example, Myles-Worsley et al. (1988)
demonstrated that expert radiologists could discriminate abnormal X-ray films
from normal ones within 500 msec. Also, Sowden et al. (2000) showed that ex-
pert radiologists could detect subtle changes of density in X-ray films, and ex-
plained that the learning process underlying medical image diagnosis is closely
related to the mechanisms of perceptual leaning that have been extensively
investigated in laboratory studies.

On the other hand, many researchers have agreed on the interactive aspects
of a diagnostic process (e.g., Krupinski, 2003; Manning, Gale and Krupin-
ski, 2005). For instance, Kundel and Nodine (1983) and Nodine and Kundel
(1987), who conducted studies with eye movements data in X-ray film di-
agnosis, hypothesized an interactive model of the top-down and bottom-up
processes. The other researchers conducted experimental studies that manip-
ulate advance information such as clinical charts or advice from computational
supporting systems (Alberdi et al., 2004; Crowley et al., 2003; Lesgold et al.,
1988; Norman et al., 1992). For example, Norman et al. (1992) demonstrated
that perceived features are dramatically influenced by clinical charts in which
any previous disease of the patients is indicated.

Additionally, some studies directly pointed out positive relations between a
top-down process and the final performance of a task. For example, Peterson
(1999) observed that medical students who formed a hypothesis in the initial
phases exceeded the other students in accuracy of final diagnosis. Similarly,
Norman et al. (1999) conducted experiments to test the positive effects of a
top-down process manipulating instructions that prompted medical students
to make a hypothesis prior to observing electrocardiograms. From the results
of their experiments, they confirmed the positive effects of the instructions,
showing that the medical students who made a hypothesis were superior in
their final diagnostic performance to the other students.

More importantly, Lesgold et al. (1988) demonstrated the changes of a di-
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agnostic process due to the development of expertise by conducting protocol
analysis studies for X-ray film diagnosis. Particularly, they confirmed that the
process of expert diagnosis is characterized by an iterative cycle between the
bottom-up and top-down processes, where an initial hypothesis is immedi-
ately triggered after a first glance at medical images, followed by a search for
abnormalities in them.

1.4 The present study

According to the above previous studies, the development of expertise in medi-
cal image diagnosis involves not only a shift to the bottom-up process, but also
a shift to the top-down or cyclic process. Apparently, these features of exper-
tise are complicated compared with the findings on the learning process or the
development of expertise in areas other than medical image diagnosis. In the
present study, in order to understand this complexity, we conducted further
protocol analysis studies on the development of expertise in real-world medical
image diagnosis. Although many protocol analysis studies have been under-
taken on medical image diagnosis (e.g., Azevedo and Lajoie, 1998; Lesgold et
al., 1988; Raufaste et al., 1998; Rogers, 1996), our study is distinguished from
those studies by three important differences.

First, we investigated the development of expertise in CT image diagnosis.
CT images are cross-sectional images of a human body, and stacking them up
reconstructs three-dimensional human anatomical structures. We chose this
task because CT images have two important characteristics compared with
radiographs (i.e., X-ray films), which the previous studies mainly used. The
first characteristic of CT images is that they provide fine-grained pictures of
the physical states of patients. Although specialized knowledge is required to
interpret CT images, it would appear that it is a straightforward matter to
extract the relevant features from them. Therefore, it can be considered that
CT image diagnosis is a task that is unlikely to change the process of diagnosis
resulting from the development of expertise. It is important for understanding
the nature of interactions between perceptual and conceptual processing to
investigate whether the shifts of the process could be found in the task of CT
image diagnosis. The second characteristic is related to the environment in
which CT image diagnosis is performed. In CT image diagnosis, physicians
usually receive vast amounts of information through computer monitors and
must make a large number of physical manipulations using computational
devices. That is, the task is a typical cognitive activity that involves complex
manipulations of computational devices. We think that it is important for us
to understand the cognitive process behind such manipulations in order to
develop future computer-aided diagnosis systems.
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Second, we quantified the components of medical image diagnosis and at-
tempted to demonstrate the effects of expertise on the relations of the two
components. Past studies seemed to use qualitative methods of investigation
to understand the process of medical image diagnosis. For example, some stud-
ies used protocol excerpts to discuss qualitative differences between experts
and novices (e.g., Lesgold et al., 1988; Rogers, 1996), while others directly
rated or coded types of strategy in verbal protocols data (e.g., Crowley et
al., 2003; Peterson, 1999). So far, there have been only a few quantitative
investigations into the interactive processes of perceptual and conceptual pro-
cessing. However, in order to reach a scientific understanding of the process
of medical image diagnosis, it is necessary to take an approach that quantifies
verbal protocol data objectively. We believe that the objective understanding
of the relationship between perceptual and conceptual processing will lead to
a future framework for general human-computer studies. We also think that
more fruitful relationships between users and computational devices could be
constructed based on automatic methods of analyzing user behaviors. There-
fore, we developed our own protocol analysis method, which analyzes data in
an automatic way.

Third, in addition to the verbal protocols, we analyzed external activities in-
volved in the process of diagnosis. As noted the above, CT image diagnosis
involves complex manipulations of computational devices. Therefore, we as-
sumed that a cognitive process involved in the task is partially externalized in
the computational devices. In the present study, we captured manipulations
of the systems, and distinguished types of activity concerning perceptual pro-
cessing from activities associated with conceptual processing. We investigated
how these two types of activity are interconnected in the process of medical
image diagnosis. So far, there have been only a few studies conducting detailed
analyses of these activities in medical image diagnosis. We think that analyz-
ing these activities could contribute a deeper understanding of the relationship
between perceptual and conceptual processing, leading to a theoretical frame-
work for human-computer interactions in medical image diagnosis.

2 Method

In order to investigate medical image diagnosis in a realistic context, the ex-
periment was performed in a room located in the radiology department at
Nagoya University, where participants in our experiment usually work. The
ambient room light was set to about 200 lux.
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(a) (b)

Fig. 1. Examples of case materials (a: an example of benign cases, b: an example of
malignant cases). Arrows indicate locations of target lesion. The starting points of
the arrows indicate enlarged images of the target lesions.

2.1 Participants

Ten participants were recruited from the radiology department at Nagoya
University. They were divided into the following two groups.

• Experts (n = 5). These participants were radiologists, who each held an
academic position in the radiology department. They had five to twenty
years experience (Mean: 11 years) in medical image diagnosis.

• Novices (n = 5). These participants were residents and graduate students
of the radiology department. They were physicians who had completed the
degree of undergraduate medicine, and had less than two years experience
in medical image diagnosis.

2.2 Task

The experimental task was to make “differential diagnoses of lung nodules
(malignant/benign).” In this task, the participants were required to investigate
nodular lesions and the overall state of the lung area, and to determine the
pathological states of the lesions. However, determination at the differentiation
level of the nodules was not required of the participants because this seemed
to make the task extremely difficult.

2.3 Materials

2.3.1 Cases

We randomly chose case materials from a database, which consisted of cases
whose diagnoses had already been determined by operations, biopsies, or
follow-up examinations. All of the chosen cases contained at least one nodular
lesion, and some of them included multiple lesions. In a later section the most
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significant nodular lesion in each case was refereed to as the target lesion,
which the participants were required to make a diagnosis on. They were not
asked to make diagnoses on the other lesions, but they could use the other
lesions to make a decision about the target lesions.

The selected cases consisted of eight benign and six malignant ones. The mean
size of benign lesions was 11.64 mm (SD: 4.52), and the mean size of malig-
nant lesions was 16 mm (SD: 2.77). The benign cases had been diagnosed as
tuberculosis, organizing pneumonia, amyloidosis, or benign tumors, while the
malignant cases included a variety of lung cancers, such as well differentiated
carcinoma and squamous cell carcinoma.

2.3.2 CT datasets

Each of the cases consisted of three types of CT datasets; we refer hereafter
to these three types of CT data as lung-window CT, mediastinal-window CT,
and high-resolution CT. Each type has the following specifications.

• The lung-window CT. This dataset includes CT slices with a window level
of -600 H.U, a window width of 1800 H.U, and a slice thickness of 5-10 mm,
and shows the overall lung area composed of 30 to 50 slices. By using this
type of dataset, a physician can judge the location of a target lesion and
observe base diseases of the lung area such as emphysema or interstitial
pneumonia.

• The mediastinal-window CT. This dataset is the same as the lung-window
CT dataset, except that display conditions are adjusted to show the me-
diastinal area clearly (window level, 50 H.U; window width, 300 H.U). By
using this type of image, physicians can check for abnormalities in the me-
diastinal regions and the axillary regions.

• The high-resolution CT. This dataset focuses on a target lesion (resolution,
about 300 µm; slice thickness, 0.5 to 2 mm).Usually, physicians use this
type of image to investigate important features of a target lesion (density,
shape) and its relations to lung tissues (blood vessels, bronchi, and pleural
membranes).

2.3.3 Devices

In the experiment, the participants used the following two devices, which were
the ones that they usually employed.

• The device for viewing CT images (see Fig. 2a).Two of the three types of
CT datasets were presented on two LCDs: one is on the left and the other
on the right. These were monochrome monitors with 256 gray levels and
a resolution of 1200 1600 (Eizo Nanao Corporation, RadiForceG20). They
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(a) The device for view-
ing CT images. CT im-
ages were presented on
the two LCDs on the left
and right.

(b) The device for writing
medical reports. The sys-
tem consisted of two text
forms (findings, and im-
pressions).

Fig. 2. Devices for the experiment.

were calibrated to the DICOM standard. In the experiment, the participants
were able to freely change the types of CT datasets on the LCDs and choose
the viewing distance without any constraints. In addition, each of the two
LCDs was able to display a series of two slices, and the participant could
select a left-right or right-left arrangement by using the workstation’s mouse.
The slices in the datasets are aligned from top to bottom, making it easy to
observe three-dimensional structures of a patient’s body by scrolling with
the mouse wheel. The positions of displayed slices are indicated by the scroll
bars on the LCDs. For example, the right LCD in Fig. 2a presents the slices
in the high-resolution CT, displaying the upper side of a nodule. On the
other hand, the left LCD in Fig. 2a shows the slices in the lung-window CT,
displaying the under side of the lung area.

• The device for writing medical reports (see Fig. 2b). The medical reports
were written using a computational device that provides two text forms. The
form on the top was mainly used to write findings (i.e., observed abnormal
features), while that on the bottom was used to write impressions (i.e.,
suspected diseases). In the experiment, all of the reports were written in
Japanese.

2.3.4 Clinical histories

In this experiment, no clinical information other than CT images was pre-
sented because the previous studies indicated significant influence of clinical
histories on the accuracy of diagnosis.
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2.4 Procedure

The participants participated in the experiment individually. The experiment
required a total of two to four hours, divided into the following four stages.

(1) Instructions. Each participant was given the following instructions: “imag-
ine the situations where abnormal findings were detected as a result of
screening tests. Your task is to make differential diagnoses of the detected
abnormal findings.” Following this, each participant was also instructed
to verbalize all of their thoughts without filtering them.

(2) Practice task. Each participant made a diagnosis on one of the benign
cases while being prompted to talk aloud. If the participant did not talk
aloud for more than about ten seconds, the experimenter prompted the
participants by an encouragement such as “please continue to talk aloud.”
The data obtained in the practice task were excluded from analysis.

(3) Main task. In the main task, each participant made diagnoses on thir-
teen cases that included seven benign and six malignant cases. In order to
avoid order effects, the presentation order was randomized among the par-
ticipants. For each case, the participants investigated the CT images and
wrote a medical report about abnormal findings and suspected diseases.
During the main task, all of the think-aloud protocols were recorded with
a single MD recorder. Additionally, two digital video cameras captured
the displays of the two devices.

(4) Rating malignancy. Following the diagnosis of each case, the participant
was asked to rate how strongly s/he felt that the target lesion was ma-
lignant (0: absolutely benign to 10: absolutely malignant).

3 Data analysis

3.1 Recorded data

We obtained four types of data in the experiment: (1) the rating scores of
malignancy; (2) the think-aloud data; (3) the texts written in the device for
writing the reports; and (4) video records of the manipulations of the devices.
For each type of data, we made the following assumptions: the first type of
data was assumed as the final performance of diagnosis; the second, third,
and fourth types of data were related to the process of diagnosis. In partic-
ular, verbalized contents such as the second and third types were assumed
to represent the participant’s thinking process, which can be analyzed by the
protocol analysis method; and the fourth type of data was assumed to rep-
resent external activities in the task. Prior to presenting the results of the
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experiment, we outline the analysis methods for each type of data.

3.2 Accuracy of diagnosis

In order to confirm the superiority of the experts in medical image diagnosis,
we calculated the two types of score from a participant’s rating score for ma-
lignancy. The first type of score is a d′, a basic score given by signal detection
theory. The score is computed for each participant by a set comprising the hit
and false-alarm ratio (d′ = Z(Hit) − Z(FA)). 1 This score has been used in
many studies on medical image diagnosis. However, it is not the best index
for the diagnostic performance because this index does not reflect how confi-
dent the participants felt with their judgments. Because of this limitation, we
calculated A

z
as a second type of score. It was calculated as the area under

the receiver-operation curve (ROC) for each participant.

3.3 Protocol analysis

In order to investigate the cognitive process behind the final diagnostic per-
formance, we conducted a verbal protocol analysis. However, the amount of
verbal protocols data obtained in our experiment was so large that the tradi-
tional hand-coding protocol analysis was difficult in practice. To ensure reli-
able coding, and to conduct a detailed quantitative analysis, we developed a
semi-automatic protocol analysis method, in which the Japanese morpholog-
ical analysis system ChaSen (Matumoto et al., 2000) was used. ChaSen is a
standard tool for text analysis and text mining in Japan. The system auto-
matically converts plain texts to word sequences using dictionaries of words
and grammar. In this analysis, we directly described semantic tags in ChaSen’s
word dictionary. The coding procedure comprised the following seven stages. 2

(1) Transcribing the data. Think-aloud data and texts written in medical re-
ports were transcribed. We synchronized the written texts in the reports
to the think-aloud texts. When think-aloud texts were concurrently writ-
ten in reports, the duplicated sentence was deleted. Following this, the

1 The hit and false-alarm ratios were calculated by dichotomizing the ratings at the
score of 6, except for the four participants who rated more than one case as neutral
(the score of 5). For these four subjects, we divide the scores into three categories
(the scores less than 4, the score of 5, the scores more than 6), and calculated de,
which is an approximation of d′ in the ROC analysis (Wickens, 2002).
2 In this analysis we elucidated a single case of a single expert due to technical
failures of the experimental devices.
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texts were segmented into statements, which were time-stamped accord-
ing to analysis of the recorded digital video data.

(2) Morphological analysis (1). The texts obtained through the above proce-
dure were input into ChaSen. ChaSen then analyzed the texts with the
default word dictionary, and output 104 473 words.

(3) Selecting the words. Most of the words output by the above procedure
were syncategorematic terms (e.g., prepositions), or words that did not di-
rectly relate to the diagnostic activities (e.g., conjunctions, fillers). There-
fore, these kinds of words were eliminated from the subsequent analysis.

(4) Creating a new dictionary. We created a new word dictionary comprising
the words selected by the above procedure. Additionally, technical terms
that were not appropriately discriminated by the default dictionary were
registered into the dictionary.

(5) Marking semantic tags. A semantic tag was labeled in each of the words.
The tags were divided into the following four main categories.
• Percept. This tag indicates a vocabulary of perceptual features, which

can be directly observed from the CT images (323 words).
• Concept. This tag indicates a word concerning physiological or patho-

logical features on the CT images, such as a disease name or a method
of surgery (148 words).

• Region. This tag indicates a word concerning lung area or an organiza-
tion of the lung, which is a technical term of anatomy (165 words).

• Goal. This tag indicates a word concerning the type of CT image or a
word relating to the task that the physicians performed (19 words).
All of the labeling was performed by the first author. Following this, the

third author labeled all of the words with the above tags independently.
The first and third authors agreed on 91% of the tags. Furthermore, the
sixth author, who is an expert radiologist, checked the labeling from the
viewpoints of radiological validity.

Of the four main categories, we focused on Percept and Concept. These
two categories can be regarded as verbal outputs of perceptual and con-
ceptual processing, respectively. Thus, the first author divided the words
tagged as Percept and Concept into several subcategories, which represent
dimensions of perceptual features or detailed semantic meanings (Percept:
Density / Shape / Number / Inside / Size / Category / Relation / Dist.
/ Others; Concept: Malignant / Benign / Others / Artifact / Surgery /
Clinical / Forward / Judge). We also divided the words tagged as the
two main categories into several objects that indicate anatomical regions
mainly used by the words (Nodule / Lung / Br. / Overall / Others). The
labels of objects are related with the labels of Region, but more closely
connect perceptual and conceptual processing. Definitions of these tags
are shown in Table 1.

(6) Morphological analysis with the new dictionary. After deletion of the de-
fault dictionary, morphological analysis was again conducted with the
new dictionary. ChaSen with the new dictionary output 13 984 words.
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Table 1
Definitions of subcategories and objects. The numbers of words registered in the
dictionary are in parentheses. Br. stands for ”the bronchus”.

Names of tag Definitions (examples)

Subcategories
of Percept

Density (36) Types of words meaning density or thickness (e.g., Ground-
Glasse-Opacity, unevenness, brightness).

Shape (89) Types of words meaning shape or silhouette of nodules (e.g.,
borderline, spicula).

Number (24) Types of words meaning the number of objects (e.g., single,
multiple, many).

Inside (9) Types of words related to qualities of inside nodules (e.g., solid
pattern, pneumatic, cavity).

Size (35) Types of words related to size (e.g., large, centimeters, thick).

Category (21) Types of words related to medical categories of densities (e.g.,
mass, nodule, cyst).

Relation (54) Types of words meaning relations among multiple objects
(e.g., catch up, cramp up, pass over).

Dist. (27) Types of words meaning distributions of multiple objects (e.g.,
granular, sectional).

Others (28) Types of words that could not be allotted to the above cate-
gories (e.g., choke up, salient).

Subcategories
of Concept

Malignant (22) Types of words that are possible for use in diagnosis of the
target region, and indicating lung cancer (e.g., lung cancer,
adenocarcinoma, carcinoma).

Benign (31) Types of words that are possible for use in diagnosis of the
target region, and indicating diseases other than lung cancer
(e.g., lung cancer, tuberculosis).

Others (38) Types of words that refer to disease other than nodules (e.g.,
pneumonectasia, interstitial pneumonitis, heart infarction).

Artifact (13) Types of words that refer to densities caused by artifacts of
X-ray photography (e.g., gravity, breath).

Surgery (15) Types of words that refer to densities caused by artifacts of
X-ray photography (e.g., post surgery, cut off).

Clinical (16) Speculations on clinical conditions of a patient (e.g., young,
smoking, man).

Forward (7) Future treatment of a patient (e.g., follow-up, biospy).

Judge (13) Types of words related to a participant’s knowlege or judge-
ment (e.g., benign-or-malignancy).

Object Nodule (284) Perceptual features or disease related to nodules (e.g., spicula,
lung-cancer).

Lung (48) Perceptual features or diseases that do not consist of nodules
(e.g., satellite region, emphysema).

Br. (18) Perceptual features or diseases related to the bronchus (e.g.,
occlusion, bronchial infection).

Others (66) Perceptual features or diseases related to the mediastinal re-
gion, abdominal region, or armpits (e.g., hepatic cysts, fatty
liver).

Overall (55) Ambugious words that could not be allotted to the above cat-
egories (e.g., abnormal, disease, pathologize).

14



Acc
ep

te
d m

an
usc

rip
t 

Table 2 shows an example of the output words.
(7) Marking with New. After completion of the above procedures, we marked

the words that had not appeared in the previous word sequence with
a tag, New (see the seventh column of Table 2). This tag indicates the
initial appearance of words in the process of diagnosis. In addition, we
used the tag to count the number of unique words in each case for each
participant.

3.4 Analysis of the external activity

As noted earlier, CT image diagnosis involves manipulations of computational
systems. Therefore, the cognitive process involved in the task could have been
investigated by analyzing the manipulation of the systems. However, in the
present experiment, we could not directly obtain the manipulation log from
the systems because the systems were set up in a room used for normal medical
services. It was not allowed to install any software to obtain the manipulation
log. Therefore, we used the digital video data, which was captured by the cam-
era fixed on the device for viewing CT images, to analyze the manipulations
of the systems. The analysis procedures comprised the following five stages. 3

(1) Automatic detections of changing CT slices. As shown in Fig. 2a, scroll
bars on the LCDs have a relatively high density compared to the back-
ground, making it possible to detect positions of the scroll bars using a
simple threshold processing method. Fig. 3 presents results of the pro-
cessing. The line graph in the figure corresponds to the movement of the
scroll bars. The horizontal axis corresponds to the positions of the scroll
bars, while the vertical axis represents the task timelines (minutes).

(2) Automatic detections of CT dataset switching. After drawing a graph for
each case, we detected the time points in which a different type of CT
dataset appeared on the LCD. As shown in Fig. 3, there are gaps in the
line graph (e.g., about 1:40 in the right display for the novice, and about
6:20 in the right display for the expert). These gaps represent the time
points in which the participant switched CT dataset types on the LCD.

(3) Coding of the CT dataset types. For each time-point detected by the above
procedure, the types of switched CT datasets were coded by observing
the original video data. In Fig. 3, the CT dataset types are distinguished
by line colors: the light gray lines represent the lung-window CT; the
dark gray lines represent the mediastinal-window CT; and the black lines
represent the high-resolution CT.

3 In addition to the above single case of a single expert, another case of a single
novice was excluded from this analysis due to technical failures of the DV cameras.
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Table 2
Examples of coding for verbal protocol data. The first column shows time points of
verbalizations for each word. The second to sixths columns show outputs of ChaSen
(Main = main category, Sub = subcategory). The seventh column shows New, which
was coded after morphological analysis.

Time Word Synonymous words Main Sub Object New

25 S8 S8 Region Lung new

25 S10 S10 Region Lung new

26 right of right Region Lung new

26 S10 S10 Region Lung

32 light light Percept Density Nodule new

32 nodular density nodule Percept Category Nodule new

42 spiculation spicula Percept Shape Nodule new

42 surrounding area surround Percept Dist. Lung new

42 attach attach Percept Relation Overall new

48 surrounding area surround Percept Dist. Lung

48 GGO grand-glass-opacity Percept Density Nodule new

48 attach attach Percept Relation Overall

52 part of localized Percept Dist. Lung new

52 GGO grand-glass-opacity Percept Density Nodule

55 pleura pleura Region Lung new

55 connect connect Percept Relation Overall new

64 atelectasis atelectasis Percept Others Br. new

64 attach attach Percept Relation Overall

• • • • • • •

• • • • • • •

• • • • • • •

325 abnormal abnormal Concept Others Overall new

325 largement largement Percept Size Others

336 mm mm Percept Size Nodule

336 largement largement Percept Size Others

336 transfer transfer Concept Malignant Nodule new

336 possibility possibility Concept Judgement Others new

351 pleural effusion pleural effusion Region Lung

369 bronchus bronchus Region Br.

369 calcification calcification Percept Density Nodule

372 lymphatic node lymphoglandula Region Mediastinum

372 calcification calcification Percept Density Nodule

379 malignant malignant Concept Malignant Nodule

391 lung cancer malignant Concept Malignant Nodule

399 right lung right lung Region Lung

399 S8 S8 Region Lung

399 nodular density nodule Percept Category Nodule

399 lung cancer malignant Concept Malignant Nodule

418 light light Percept Density Nodule

418 nodular density nodule Percept Category Nodule
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Fig. 3. Examples of analyses of external activity (a: An example from the novices,
b: An example from the experts). The vertical axis represents the task timeline
(minutes), and the horizontal axis represents positions of the scroll-bars in each
display. Types of activity are distinguished by lines and background colors.

(4) Semi-automatic detection of which LCD the participants focused on. We
semi-automatically detected on which of the LCDs the participants fo-
cused. We considered the display in which the scroll bar was moving as
the LCD under focus. Additionally, we considered that when neither of
the two scroll bars moved, the participants were manipulating the device
for writing the reports. In Fig. 3, the backgrounds of such sequences are
painted in gray.

(5) Categorizing external activity. By taking the above steps, we categorized
each participant’s activity into the following four types.
• Observing the lung-window CT. This type of activity was defined by the

time points at which the lung-window CT was displayed on the LCD
under focus. At these time points, the participant was assumed to have
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been observing the lung-window CT.
• Observing the mediastinal-window CT. This type of activity was defined

by the time points at which the mediastinal-window CT was displayed
on the LCD under focus. At these time points, the participant was
assumed to have been observing the mediastinal-window CT.

• Observing the high-resolution CT. This type of activity was defined by
the time point at which the high-resolution CT was displayed on the
LCD under focus. At these time points, the participant was assumed
to have been observing the high-resolution CT.

• Writing the reports. This type of activity was defined by the time points
at which none of the two scroll bars moved. At these time points, the
participant was assumed to have been writing the report.
We used the above categories to analyze the relationship between per-

ceptual and conceptual processing. First, we distinguished the first three
types of activity (observing each CT dataset) from the last type (writ-
ing reports) and then assumed that the former was related to perceptual
processing and the latter was related to conceptual processing. Specifi-
cally, the first type (observing the lung-window CT) was considered as an
activity to observe overall impressions of the lung, the second type (ob-
serving the mediastinal-window CT) was an activity to check abnormal
features in regions other than the lungs, and the third type (observing
the high-resolution CT) was an activity to observe the nodule intensively.
The assumption comes from normative analysis about the experimental
task. In the experiment, the participants observed the physical states of
patients through the two LCDs. In other words, they could not observe
the features without manipulating CT datasets displayed on the LCDs.
Moreover, when the participants wrote reports, they summarized percep-
tual features that had already been found in earlier activities, and they
made decisions about what disease was affecting the patients. In the ex-
periment, the participants were required to write their decisions about
the disease in the final reports. That is, in the task, the novel perceptual
features were found in observing each type of CT dataset, and the final
decisions were made in writing reports.

3.5 Statistical tests

As a result of the above analysis, we obtained several dependent measures
for each case of each participant (10 subjects × 13 cases). We aggregated the
dependent measures across participants to generate a mean for each case. The
statistical tests for all the dependent measures, except for the accuracy scores
(d′, A

z
), used case materials as the units of analysis (n = 13). For all tests, we

set the significance level at .05, marking effects with * (p < .05) or ** (p < .01).
In the tests for the final task performance, we used one-tailed distributions
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Table 3
Task performance [Mean (SD)]

Novices Experts One-tailed
t-test

d′ 0.661 (0.729) 1.392 (0.273) t(8) = 1.87∗

Az 0.630 (0.106) 0.792 (0.106) t(8) = 1.77

Required Time (seconds) 548.87 (86.50) 494.95 (116.58) t(12) = 2.13∗

because it would be by definition unlikely that the novices performed better
than the experts. In the other tests, we used two-tailed distributions.

4 Results and discussion

4.1 Task performance

Table 3 summarizes the differences in task performance between the experts
and the novices, showing the two types of accuracy score and time required
to finish each case. The difference of d′ between the experts and the novices
reached a significant level, indicating that the experts made their diagnoses
more accurately than the novices did. In addition, we obtained marginally
significant differences in A

z
between the experts and novices (p = 0.057). As

for the time to finish a case, we also confirmed that the experts made their
diagnoses faster than the novices did. Taken together, these results indicate
the superiority of the experts over the novices in the performance of medical
image diagnosis.

In the following subsections, we show the results concerning the process of
diagnosis underlying the final performance. Sections 4.2 and 4.3 respectively
present the results concerning verbal protocol analysis and the analysis of
external activity. In section 4.4 we show results of the analysis of the relations
between the two types of data.

4.2 Results of verbal protocol analysis

4.2.1 Overall pattarns of tagged words

Outlining the results of the verbal protocol analysis, Fig. 4 presents the number
of words tagged in the four main categories. The figure describes two values
in each bar: the upper value represents the mean of the total number of words
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Fig. 4. Main categories of verbalized words. The upper value of each bar represents
the mean number of verbalized words, while the lower value of each bar represents
the mean number of newly verbalized words (marked as New). The error bars repre-
sent a one standard error of the mean. Values under each label indicate t-values for
the difference between the experts and the novices (two-tailed, paired, n = 13). The
left and right values indicate the results for the number of total words (the upper
values of the bars) and new words (the lower values of the bars), respectively.

per case, while the lower value denotes the mean number of words that were
marked with New.

The upper values in the figure demonstrate that the experts exceeded the
novices in the total amounts of words tagged as Percept and Concept. 4 Such
results imply that expertise improves their ability to verbalize their thinking
process concerning perceptual and conceptual processing. Furthermore, the
results confirm that the differences were not caused by verbalizations of du-
plicated words, but by verbalizations of varieties of words, because the same
differences in expertise were observed in the lower values of the figure.

Roughly speaking, the above results are consistent with previous findings in
the field of medical image diagnosis. For examples, Lesgold et al. (1988) con-
firmed that experts verbalized more types of finding and more hypotheses
than novices. Rufaste, Eyrolle, and Mariné (1998) also revealed that semantic
networks constructed from experts’ verbalizations were richer than those from
novices’ verbalizations.

4 Since there were differences among the four categories in the number of words
registered in the dictionary, we did not conduct a statistical analysis for comparison
among the categories.
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Fig. 5. Subcategories of verbalized words (a: Percept, b: Concept). The notations
of values are the same as in Fig. 4.

4.2.2 Development of expertise in each of perceptual and conceptual process-
ing

As noted earlier, we divided the words tagged as Percept and Concept into
further categories such as subcategories and objects. Using these coding results,
we show detailed features of expertise in each of perceptual and conceptual
processing.

Fig. 5 shows the numbers of words tagged as each subcategory. The results for
the subcategories of Percept (Fig. 5a) confirmed that the experts verbalized
more words tagged as Shape, which represents overall features of nodules, and
Category, which is defined by multiple perceptual features. These results sug-
gest that the development of expertise changes the dimensions of perceptual
features that they focused on. The results are consistent with the findings
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Fig. 6. Objects of verbalized words (a: Percept, b: Concept). The notations of values
are the same as in Fig. 4.

obtained in the studies on perceptual learning (e.g., Goldstone et al., 2000),
which indicate that the dimensions that are focused on change dramatically
through extensive training in a category learning task. For the subcategories of
Concept (Fig. 5b), we confirmed that the experts exceeded the novices in Be-
nign. Since there is no significant difference in Malignant, the result indicates
that the novices paid relatively less attention to the possibility of a target
lesion being benign.

Fig. 6 shows the numbers of words from the viewpoint of objects. Roughly
speaking, common patterns can be observed in Percept (Fig. 6a) and Concept
(Fig. 6b): the experts verbalized more words tagged as Nodule than the novices,
whereas the novice verbalized more words tagged as Overall than the experts.
This expert-novice difference can be explained by the requirements of the task.
Since the task was differential diagnosis of lung nodules, the results imply
that the experts tuned their process to the specifics of the experimental task.
This interpretation is also consistent with the findings obtained in Lesgold et
al. (1987), in which experts limited their efforts to the task-relevant regions.
Furthermore, the results indicate that the differences observed in Fig. 4 were
not caused by verbalizations about task-irrelevant lesions.

4.2.3 Time transitions of verbalized words

Our main interest in this investigation is to understand the relations between
perceptual and conceptual processing in medical image diagnosis. In order to
understand how the two components are interrelated in the process of diagno-
sis, we investigated transitions in the amount of verbalization that occurs with
the development of a diagnosis. In this analysis, we defined four phases of diag-
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nosis, dividing the time to finish diagnosing each case into equal time intervals.
The problem with this analysis is that the time lengths of the phases were not
the same for each of the different cases and different participants. However,
the aim of this analysis was to extract patterns of the relations between per-
ceptual and conceptual processing. Although this analysis has limitations, we
think that dividing the process by equal intervals is very useful for detecting
patterns from the data.

Fig. 7 shows the number of words tagged as Percept (Fig. 7a), and Concept
(Fig. 7b) in each phase. As the previous graphs illustrated, Fig. 7 depicts two
types of values: the upper value represents the total number of words, while
the lower one denotes the number of newly verbalized words in each phase.
For each of the measures, the results of statistical tests could be summarized
as follows.

(1) The total number of words tagged as Percept (The upper values in Fig.
7a). For both the novices and the experts, the values decreased from the
initial phase to the final phase. The novices’ value decreased from Phase
1 to 4 gradually whereas the experts’ value decreased sharply from Phase
3 to 4.

(2) The number of new words tagged as Percept (The lower values in Fig. 7a).
Similar to the above results, a decreasing pattern with time was confirmed
for both the novices and the experts. Additionally, it was confirmed that
the experts’ value decreased more gradually, exceeding the value of the
novices in Phase 2 to 4.

(3) The total number of words tagged as Concept (The upper values in Fig.
7b). For both the novices and the experts, the values increased from Phase
3 to 4. In addition to this, the experts’ value decreased from Phase 1 to
2.

(4) The number of new words tagged as Concept (The lower values in Fig.
7b). The experts’ value decreased from Phase 1 to 2. On the other hand,
there was no difference across phases for the novices.

The above four results revealed characteristics of the novices and the experts
in the relations between perceptual and conceptual processing. The novices
decreased their verbalizations of Percept from the initial to later phases (see
1, 2) and increased their verbalizations of Concept in the later phases (see
3). This pattern indicates a one-way, bottom-up process, in which the out-
puts of perceptual processing are sent to the conceptual processing. On the
other hand, the salient features of the experts appear in the verbalizations
of Concept in the initial phase (Phase 1), which are distinguished from the
verbalizations of Concept in the last phase (Phase 4). In Phase 1, the experts
verbalized many words classified into Concept not only from among the total
number of words (the upper value) but also from among the number of new
words (the lower value). In Phase 4, however, they verbalized many words
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Fig. 7. The task timelines of verbalizations (a: Percept, b: Concept). The upper
(solid) and lower (broken) lines represent mean numbers of total words and new
words, respectively. For each value of each tag type, 2 (the expertise) × 4 (the
phases) analysis of variance (ANOVA) revealed a significant interaction of the ex-
pertise and the phases: the number of Percept, F (3, 36) = 6.50*; the number of new
Percept, F (3, 36) = 4.24*; the number of Concept, F (3, 36) = 3.01∗; the number
of new Concept, F (3, 36) = 6.96*. Following the above effects, simple main effects
of expertise at each phase were investigated. The results (F values, df = 1, 12) are
noted under the labels. The left and right values indicate the results for the number
of total words and new words, respectively. Similarly, the simple main effects of the
phases at each group (F values, df = 3, 36) are indicated in the legends for each
of the number of total words and new words. In addition, the legends indicate the
pairs that have the least difference among the pairs in which significant differences
were confirmed by Tukey HSD.

classed in Concept from among the total number of words, but not from the
number of new words. Therefore, the predominant appearance of Concept in
Phase 1 can be considered as multiple initial hypotheses, whereas the higher
frequencies of words classified into Concept in Phase 4 can be considered as
a few alternative hypotheses that had already been refined in the previous
phases. These characteristics of the experts’ process can be interpreted as the
cyclic process of perceptual and conceptual processing: this finding is consis-
tent with the previous studies on medical image diagnosis (e.g., Lesgold et al.,
1988).

4.2.4 Summary

We analyzed the verbal protocols data using the quantitative methods in which
semi-automatic segmentations and tagging were conducted. The analysis suc-
cessfully reconfirmed the expert-novice differences observed in the previous
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Fig. 8. The amount of each type of external activity; Lung = observing the
lung-window CT, Med = observing the mediastinal-window CT, High = observing
the high-resolution CT, and Repo = writing the reports. A 2 (the expertise) × 4
(the activity types) ANOVA revealed a significant interactions of the expertise and
the activity types, F (3, 36) = 12.33**. Similar to Fig. 7, the simple main effect of
expertise at each activity type (F values, df = 1, 12) is shown under each label. In
addition, the legend indicates simple main effects of activity types at each group (F
values, df = 3, 36) and results of multiple-comparisons (Turkey-HSD).

studies, revealing the effects of expertise not only in the total amount but also
in the time transitions of verbalizations. However, there are some limitations,
requiring further analysis of the above results. It is reasonable to consider
that the process of medical image diagnosis involves an implicit process that
is difficult to verbalize. In particular, think-aloud methods cannot be consid-
ered sufficient for investigations of perceptual processing. Ericsson and Simon
(1980) considered that one of the difficult domains to apply the think-aloud
method is a task requiring perceptual processing, and they discussed the pos-
sibility that the method changes cognitive processes. It was also implied from
Fig. 4 that the differences may depend on the differences in ability to verbalize
the thinking process between the experts and the novices. This verbalization
ability could affect the patterns of verbalization in Fig. 7. Taking the above
limitations into account, we considered that it is necessary to investigate the
relations between the perceptual and conceptual processing using additional
methods that compensate for verbal protocol analysis.
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4.3 Results on the external activity

4.3.1 Case studies

Prior to presenting quantitative results, we qualitatively discuss how the par-
ticipants performed in the task. Fig. 3, explained in an earlier section, shows
qualitative features of activity, indicating common and differential patterns of
the examples.

The common patterns of the examples are order relations of activity: first,
both the expert and the novice observed the lung-window CT slices from the
top to bottom; second, they checked the mediastinal-window CT, and observed
the high-resolution CT. After around three minutes, they started writing the
reports, and repeated writing reports and observing images until they had
reached the end of the case.

One of the differences between the examples is a type of activity on which they
spent proportionally more time. Although the total time to finish diagnosing
the case was longer for the novice, he started writing the report at almost same
time as the expert did. This indicates that the novice proportionally spent
more time writing the report. More interestingly, compared with the novice,
the expert frequently repeated writing the report and observing the images,
as can be observed from the figure in which the diagram representing the
expert has many breaks in the gray background. Importantly, this impression
is consistent with the results shown in Fig. 7, suggesting that the experts used
a cyclic process of perceptual and conceptual processing.

4.3.2 Overall patterns of external activity

In order to present the overall tendencies of external activity, we present Fig.
8, which depicts the time (seconds) to engage in each type of activity. As the
figure illustrates, the novices spent more time writing the reports, whereas
the experts spent proportionally more time observing high-resolution CT im-
ages. These results are consistent with the impressions observed in Fig. 3. In
addition, we can find a correspondence between the above results and those
in Fig. 6. Since high-resolution CT is the dataset focusing on target nodular
lesions, it can be argued that the experts tuned their methods of diagnosis to
the specifics of the experimental task (differentiation of lung nodules).

4.3.3 Time transitions of external activity

As noted earlier, we assumed that the types of activity, defined in our study,
correspond respectively to perceptual and conceptual processing. Therefore,
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investigations on transitions of activity would shed light on the relations be-
tween perceptual and conceptual processing. Fig. 9 shows the transitions oc-
curing in each activity. From each of the four figures, the following observations
can be made.

(1) Observing the lung-window CT (Fig. 9a). The values for the experts and
the novices peaked at Phase 1, and decreased from Phase 1 to 2. It was
also confirmed that the value for the novices was higher than that for the
experts in Phase 1.

(2) Observing the mediastinal-window CT (Fig. 9b). There were remarkable
differences between the experts and the novices. While the value of the
novices peaked at Phase 2, that of the experts was distributed to Phases
1 and 4.

(3) Observing the high-resolution CT (Fig. 9c). The novices’ value decreased
from Phase 2 to 3. In addition to this effect, the experts’ value increased
from Phase 1 to 2. The effects of expertise were confirmed in Phases 3 and
4, indicating that the experts exceeded the novices in the later phases of
diagnosis.

(4) Writing the reports (Fig. 9d). Both the novices and the experts increased
their values from Phase 1 to 4. Additionally, the effects of expertise were
confirmed in Phases 3 and 4. Contrary to the results obtained from the
high-resolution CT, the novices exceeded the experts in the later phases
of diagnosis.

The above results confirm the impressions from Fig 3 that the order relation
of activity for both the experts and the novices (from Lung through Med or
High to Repo). Interestingly, this relation seem to be more rigid in the novices
because the novices more intensively observed the lung-window CT in the
earlier phase (see 1), and spent more time writing the reports in the later
phases (see 4). The rigidity of the novices is also supported by the results of
observing the mediastinal-window CT (see 2), in which the value of the novices
peaked at a single phase. More interestingly, there was a contrast in the effects
of expertise between observing the high-resolution CT (see 3) and writing the
reports (see 4). This contrast indicates that the experts spent relativity more
time observing the high-resolution CT in the later phases in which writing the
reports was a dominant type of activity. That is, the contrast suggests that
the experts switched a perceptual activity (observing the high-resolution CT)
to a conceptual activity (writing the reports) more frequently. The following
analysis is aimed at confirming this interpretation directly.

4.3.4 Number of switchings between types of external activity

In order to confirm the above interpretation, we counted the number of switch-
ings from one activity to another. If expertise made a diagnostic process cyclic,
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Fig. 9. The task timelines of external activity. For each type of external activity,
2 (the expertise) ×4 (the phases) ANOVA revealed a significant interaction of the
expertise and the phases: Lung, F (3, 36) = 10.80*; Med, F (3, 36) = 12.98*; High,
F (3, 36) = 5.57*; Repo, F (3, 36) = 10.56*. The notations of values in the legends
and the labels are the same as in Fig. 7.

there would be differences between the experts and the novices in the num-
ber of switchings. Fig. 10 shows how many times the participants switched
from each type of activity. In all four types of activity, it was confirmed that
the numbers of switchings were larger for the experts than for the novices.
Among these effects, the difference in writing the reports is especially impor-
tant because the effect represents that the experts provided more shifts from
conceptual processing to perceptual processing throughout the diagnostic pro-
cess.
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Fig. 10. Number of switchings of external activity. A 2 (the expertise) × 4 (the
activity types) revealed a significant interactions between the expertise and the
activity types, F = 3.06*. The notations of the values in the legends and the labels
are the same as in Fig. 7.

4.3.5 Summary

Summarizing the above results, we can characterize the relations between
perceptual and conceptual processing for both the experts and the novices.
The results characterize the process of the experts as a cyclic one of percep-
tual and conceptual processing. In contrast, the process of the novices can be
characterized by a one-way, bottom-up process from perceptual to conceptual
processing. Importantly, these characteristics are consistent with the results of
verbal protocol analysis. Therefore, the analysis of external activity supports
the results of verbal protocol analysis. Some results on the external activity,
however, do not correspond to the results of verbal protocol analysis, or vice
versa. For example, we did not show results for external activity corresponding
to the initial hypothesis that clearly confirmed in the verbal protocol analysis.
On the other hand, we did not show the results concerning the switching of
processing in the verbal protocol analysis, which was confirmed in the analy-
sis of the external activity. The next section provides a further analysis of the
above limitations.

4.4 Correspondence between verbalized words and external activity

The previous two sections presented the results of analysis for the two types of
data: verbalized data and data concerning external activity. Each type of data
is assumed to have different correspondences to perceptual and conceptual
processing. In verbalized data, the words tagged as Percept and Concept were
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Fig. 11. Correspondence between the verbalizations and the external activity. The
upper and lower values of each bar represent mean numbers of total words and
new words, respectively. For each value of each tag type, 2 (the expertise) × 4 (the
activity types) ANOVA revealed a significant interactions between the expertise and
the activity types, the number of Percept, F (3, 36) = 18.41**; the number of new
Percept, F (3, 12) = 18.41**; the number of Concept, F (3, 36) = 8.48*; the number
of new Concept, F (3, 36) = 11.07*. The notations of values in the legends and the
labels are the same as in Fig. 7.

regarded as the verbalized outputs of perceptual and conceptual processing.
On the other hands, regarding external activity, observations of CT images
were considered a type of activity concerning perceptual processing, and the
writing reports was seen as a type of activity concerning conceptual processing.
We considered that connecting the two analyses would bring further insight
to the relations between perceptual and conceptual processing.

Fig. 11 shows number of words verbalized when engaging in each type of ex-
ternal activity. For each of Percept (Fig. 11a) and Concept (Fig. 11b), the total
number of verbalized words was shown as the upper value, and the number
of new words was shown as the lower one. The results can be summarized as
follows for each measure.

(1) Number of words tagged as Percept (The upper values of Fig. 11a). The ex-
perts’ value exceeded that of the novices in observing the high-resolution
CT.

(2) Number of new words tagged as Percept (The lower values of Fig. 11a). In
addition to the above effect, the value of the experts exceeded the value
of the novices in writing the reports.

(3) Number of words tagged as Concept (The upper values of Fig. 11b). The
value of the experts exceeded the value of the novices in observing the
lung-window and high-resolution CT, whereas the value of the novices
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exceeded the value of the experts in writing the reports.
(4) Number of new words tagged as Concept (The lower values of Fig. 11b).

The obtained effects were the same as in 3 above.

The above results revealed detailed characteristics in the diagnostic process
of the experts and the novices. Since the novices’ value exceeded that of the
experts only in writing the reports (see 3 and 4), the novices’ process can be
considered a one-way process, in which they summarized observed features
and considered the final diagnosis while writing the reports. 5 In contrast,
the experts’ process could be characterized as follows: the experts verbalized
more words tagged as Concept while observing the CT images (see 3 and
4), and they verbalized more new words tagged as Percept while writing the
reports (see 2). These features indicate close connections between perceptual
and conceptual processing in the process of the experts’ diagnosis. The former
feature indicates the close connection from the activity concerning perceptual
processing to the outputs of conceptual processing, while the latter indicates
the close connection from the activity concerning conceptual processing to the
outputs of perceptual processing. Especially, the latter feature provides direct
evidence of interactivity of the experts’ process. Since there are no perceptual
features on the device for writing the reports (see Fig. 3b), the newly verbalized
features in this activity cannot be considered as the features perceived from
the medical images. Instead, they must be features recalled from when trying
to decide on a final diagnosis.

5 General discussion

In this section, we discuss the implications and limitations of the present
study. First, we address the implications for understanding the development
of expertise in medical image diagnosis, and then deal with the relations of
our results to general theories of human cognition. Finally, we note some
limitations of the present study.

5.1 Contributions to the field of medical image diagnosis

Many researchers have so far investigated perceptual and conceptual process-
ing in medical image diagnosis. We believe that our study contributes to fur-

5 It appears that, regardless of the category, the number of verbalizations in writing
the reports is higher in the novices than the experts. Therefore, we compared the
novices with the experts in the number of words written in the final reports. As a
result, we did not find any difference between the experts and the novices in the
number of words in the final reports.
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ther understanding of the cognitive process in medical image diagnosis.

A first contribution of our study is in the experimental task in which CT im-
ages were used as the materials. As noted earlier, compared to radiographs,
which the prior studies mainly adopted, CT images provide features that can
be clearly observed by physicians. Therefore, it can be concluded that we have
confirmed the cyclic process in a task that is unlikely to change due to the
development of expertise. We speculate that one of the possible reasons caus-
ing this cyclic process is uncertainty. Regardless of visual clarity, features on
medical images only statistically relate to actual diseases (a related discussion
is in Sharples et al., 2000). In situations where a single feature is not enough
to decide a correct concept, it could be useful to use a cyclic process, where
multiple hypotheses are proposed and they drive the search for additional
features in the images (a similar discussion is in Norman et al., 1999).

A second contribution of our study is in the analysis method for the two types
of data. We showed transitions of the two components, perceptual processing
and conceptual processing, in each of the two types of data. Our methods are
contrasted with the previous studies, which discussed the nature of expertise
based on protocol excerpts or direct coding for strategy types. We think that
the approaches adopted by the previous studies are superior in demonstrating
qualitative features of the diagnostic process, but inferior in objectivity. Our
approach successfully provides support for the previous findings with respect
to the quantitative data.

Furthermore, we consider that the advantages of our approach are not limited
to reconfirming previous findings; we believe that the semi-automatic quanti-
tative analysis sheds light on the underlying mechanisms of human cognition.
A third contribution of the study comes from the advantages of our analysis
methods. We considered that our study revealed that the relations between
perceptual and conceptual processing in medical image diagnosis are not it-
erative but interactive. The term iterative relations means here that the two
components cyclically repeat but do not influence each other. On the other
hand the term interactive relations means here that the two components cycli-
cally repeat and do influence each other. Our results, especially the results
shown in Fig. 7 and Fig. 11, clearly indicate that the interactive relations
are involved in the process of medical image diagnosis. For example, Fig. 7b
indicates that the experts generated multiple initial hypotheses after a first
glance at medical images, and they finally narrowed the search to a few alter-
native hypotheses. Furthermore, Fig. 11 presents a strong connection between
perceptual and conceptual processing in the process of the experts’ diagnosis.
Fig. 11a illustrates that the experts generate new perceptual features while
writing the reports, and Fig. 11b indicates that they verbalized conceptual
words while observing the images. These results provide evidence of the inter-
active relations, and shed light on the cognitive mechanisms in medical image
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diagnosis.

Finally, we would like to assert a contribution of our study from the viewpoint
of cognitive engineering. This study was performed as part of a larger project
that is being conducted in collaboration with radiologists, researchers of cog-
nitive science, and researchers of image-processing engineering, with the aim
of developing intelligent systems that support the diagnostic process (details
in Morita et al., 2004, 2005). So far, image-processing engineering has devel-
oped elaborate tools that mainly support physicians’ perceptual processing
(e.g., Mori et al., 2000). We believe that the combination of image-processing
engineering and cognitive scientific analysis will make it possible to create
innovative tools for supporting the interactive process in medical image diag-
nosis.

5.2 Relationships with the other areas of learning and expertise

Through the evolution of cognitive science and psychology, the interactions
between perceptual and conceptual processing have been frequently investi-
gated. These studies pointed out that the development of expertise accelerates
the shift from the top-down to bottom-up process. Although such a shift seems
to contradict our results, we consider the contradictions not to be acute. We
agree that some aspects of medical image diagnosis could not be explained
by previously discussed learning mechanisms, such as perceptual learning or
compilations. However, it is clear that the basic learning mechanisms underlie
the interactive process observed in the present study.

In particular, we think that the processing represented by the ACT-R archi-
tecture has similar features to the process observed in the present study. As
mentioned in section 1.2, the model constructed by Taatgen (2005) imple-
mented learning mechanisms of compilation, which creates new production
rules by collapsing two production rules into a single rule. In the initial state
of his model, declarative knowledge controlled the firings of production rules.
However, after the compilation, production rules could be directly evoked by
the environmental information, and declarative knowledge no longer involved
firings of production rules.

This can be viewed as a study that contradicts our results. Contrary to his
compilation model, the experts in our study frequently verbalized conceptual
knowledge compared with the novices (see Fig. 4). This conflict depends on
differences in characteristics existing among the tasks. Unlike the air traf-
fic control task, the task used in our study cannot be accomplished without
declarative knowledge because medical reports should contain verifications of
the diagnosis connecting conceptual knowledge with observed features.
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Even though the above contradiction exists, we can find a commonality be-
tween our results and his study. Importantly, he showed that compilation
not only eases the retrieval of declarative knowledge, but also promotes time-
sharing of parallel behaviors of multiple modules. The air traffic control task
consists of multiple sub-tasks including perceiving airplanes on a monitor,
clicking on one of the planes on the monitor, and pressing keys. Each of these
sub-tasks can be performed by the manual or visual modules of the ACT-R
architecture. In the initial state of his model, the tasks were conducted serially
from the sub-tasks concerning the visual module to ones related to the manual
module. After the compilation of declarative knowledge, these sub-tasks were
performed simultaneously, and the two modules interactively exchanged in-
formation with each other. This parallel process is consistent with our results
presented in section 4.4; the experts retrieved conceptual knowledge while ob-
serving images and wrote reports while considering perceptual features. Using
the terms of the ACT-R architecture, we can imply that such an activity is
a parallelization of the perceptual and declarative modules. Although further
investigations is required to judge whether such a process can be replicated in
the ACT-R architecture, our results have sufficient meaning for this theory.

There are also some contradictions, though not serious ones, between our
study and the previous studies on expertise in areas other than medical im-
age diagnosis. For instance, Dreyfus and Dreyfus (1986) distinguished intu-
itive holistic understanding of experts from analytical thinking of novices by
conducting case studies on expertise in nursing activities. Although their dis-
tinction seems to be inconsistent with our claim, they also acknowledged the
cyclic processes of experts in medical image diagnosis. Their explanation is
that close examination tends to follow holistic decision-making in a situation
where important decisions are made.

In addition, even in areas other than medical image diagnosis, it has been
pointed out that the development of expertise facilitates the shift to the inter-
active process of multiple components. In particular, we believe that the pro-
cess presented in this paper is similar to those of design and scientific discovery.
For example, in studies on design, many researchers have confirmed interactive
relations between discovering novel visual features in sketches and conceptu-
alizing design goals (Goldschmidt, 1994; Kavakli and Gero, 2001; Suwa et al.,
2000). In addition, in the area of scientific discovery, Dunbar (1993) demon-
strated that an interactive process of data search and hypothesis generation
relates to high task performance.
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5.3 Limitations and future studies

Although we successfully demonstrated expert-novice differences in the pro-
cess of medical image diagnosis, our findings have several limitations. One of
these comes from accidental errors in the analysis method. Compared with
conventional hand-coding methods, our semi-automatic methods might intro-
duce not a few errors in the results for the verbal protocols and the external
activity. However, it is difficult to imagine that the obtained results are ar-
tifacts of our methods because it is reasonable to suppose that randomized
errors were introduced in both novice and expert groups. Therefore, we be-
lieve that the obtained differences between the experts and the novices are
sufficiently reliable.

A second limitation is in the generalization of our results. The experiment was
conducted in a single institute, and the number of participants was limited.
Therefore, we should be careful about applying our findings to other institutes.
We think that the generalizations need to be based on the correspondences
with previous findings. As noted earlier, the previous studies pointed out the
effects of expertise in the number of verbalizations and in the relations between
perceptual and conceptual processing. Therefore, we believe that these findings
are applicable indeed to other institutes.

A related limitation pertains to the stages of expertise. Many researchers have
argued that the development of expertise in medical image diagnosis is not a
monotonic function (Lesgold et al., 1988; Raufaste et al., 1998): those studies
showed that physicians who had intermediate experience in medical image
diagnosis or expert physicians who did not belong academic institutes tended
to use a bottom-up process. Therefore, we could not apply our results to all
medical experts.

Finally, we did not show relations between the diagnostic process and the di-
agnostic performance. Therefore, it is unclear whether the observed process is
preferable or not for gaining high performance. In addition, we cannot reject
the possibility that the interactive process was caused by the difficulty of the
task. Although the case materials were randomly chosen, the final diagnos-
tic performance was not sufficiently high. In easier tasks such as the nodule
detection task, the experts might possibly use a bottom-up process.

Despite the above limitations, we can assert that our study contributes a
deeper understanding of the interactive process of perceptual and conceptual
processing.
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6 Conclusion

This paper presented experimental studies on the relationship between per-
ceptual and conceptual processing and demonstrated the effects of expertise
on the relations in medical image diagnosis. We believe that understanding
this topic is important for constructing a theoretical basis for human-computer
studies because the integration of these cognitive components can be regarded
as a central foundation of human-computer interactions. In future studies, the
analysis method and the data presented in this paper are expected to be used
to construct a detailed theory such as cognitive models and applied to develop
innovative computer-support systems.
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