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Learning through Intermediate Problems in Creating Cognitive 

Models 

Cognitive modelling is one representative research method in cognitive science.  

It is believed that creating cognitive models  promotes learners’ meta-cognitive 

activities such as self-monitoring and reflecting on their own cognitive 

processing.  Preceding studies have confirmed that such meta-cognitive activities 

actually promote learning effects.  However, there are some difficulties in 

bringing about learning by creating cognitive models in an educational context.  

To overcome the difficulties, we propose an innovative learning design, “learning 

through intermediate problems”, and also developed a web-based production 

system called DoCoPro that can be used anywhere and anytime in an 

environment connected to the Internet.  We performed three introductory 

cognitive science classes in which the participants learned cognitive modelling 

and constructed running computer models using our system.  In the first and 

second class, the participants were required to construct production system 

models that solve pulley problems.  They also posed their original pulley 

problems that their own models were subsequently able to solve.  These 

generated problems were distributed to the other members.  The participants were 

able to find incompleteness in their cognitive models, revise them to remove the 

incompleteness, and improve their models while solving the given problems.  The 

participants, by successfully creating  sophisticated models, acquired a deeper 

knowledge of the learning domain.  The class practices confirmed the utility of 

“learning through intermediate problems” when constructing an educational 

environment for learning creating cognitive models.  In the third class, the 

participants constructed cognitive models solving addition and subtraction 

problems using DoCoPro.  The cognitive processing underlying such problem 

solving is automated, therefore it may be difficult to verbalize and externalize 

such cognitive processes.  The post questionnaire showed evidence that the 

participants actually performed meta-cognitive activities while monitoring their 

own internal information processing. 

Keywords: word; Cognitive modelling, Production system, Reflection, Web-

based application 

 



Introduction 

Model-based approach in cognitive science 

The model-based approach is one main research method in cognitive science.  This 

innovative research approach opened a new era in the history of studies for exploring  

human intelligence.  Schunn et al. (1998) examined the manuscripts published in 

Cognitive Science, an official journal of the cognitive science society,  and concluded 

that the model-based approach has taken a central role in the studies of cognitive 

science.  There are many frameworks for constructing cognitive models; rule-based 

description has been widely approved as one of the most typical frameworks.  

Production system, initially developed by Newell and Simon (1972), is a popular 

framework for embodying the rule-based description in computer programs.  In recent 

cognitive science studies, some standard architectures, such as SOAR (Newell 1990) 

and ACT-R (Anderson & Lebiere 1998), have been widely used in the cognitive science 

community.   

Advantages of cognitive modelling 

There are many advantages in building computational models of cognition.  The 

following is a list of the advantages that almost all cognitive scientists accept (Fum et al. 

2007).   

• Clarity and completeness 

• Better exploration and evaluation 

• Serendipity and emergence 

In terms of the clarity and completeness, verbally expressed statements are 

sometimes flawed by internal inconsistencies and are also incomplete because 



unconscious processes cannot be reported.  To build a properly representative computer 

program, researchers have to describe accurately every process occurring in the mind.  

Computational modelling forces the hidden assumptions not reported to become fully 

explicit (Cooper et al. 1996).   

From the viewpoint of learning activities, this characteristic of constructing 

cognitive models may bring important educational advantages.  To construct cognitive 

models, learners have to understand what processes underlie the solving of a specific 

task.  They may be led to focus on their own cognitive processing to find such processes.  

This activity can be expected to activate learners’ reflective thinking or meta- 

monitoring of their cognitive processes.   

Meta-cognition includes a wide variety of cognitive activities.  Two dimensions 

are decisively important to categorize such meta-cognitive activities.  One dimension is 

monitoring either memory or processing, and the other is either ongoing or retrospective 

activities.  When constructing cognitive models in our contexts, participants have to 

understand what procedures underlie the solution processes of a specific task.  They are 

expected to be led to focus on their own cognitive processing to understand such 

processes.  Therefore, the meta-cognition that we intended to focus on in this 

manuscript is monitoring on-going cognitive processing.  When creating cognitive 

models, learners are guided to monitor their thinking processes for formalizing their 

knowledge; i.e., they formalize knowledge based on the rule description framework for 

constructing cognitive models to run on computers.  Such formalization may elaborate 

their knowledge and promote deeper understanding of learning domains.  Many 

preceding studies have confirmed that such reflective thinking and meta-cognitive 

activities promote learning (Renkl 1997; Renkl et al. 1998).  One representative way to 

promote monitoring activities is self-explanation (Chi et al. 1989; 1994).  Based on their 



findings, many educational systems, such as Lisp Tutor (Pirolli and Recker 1994), 

Geometry Cognitive Tutor (Aleven and Koedinger 2002), and SE-Coach (Conati and 

VanLehn 2000), were developed for improving learning by activating such self-

explanation activities.   

Difficulties in cognitive modelling 

Even though there are many advantages in cognitive modelling, there are problems to be 

solved in computer modeling when having novice learners try to construct successful 

running models.  One big issue is the usability of models (Pew and Mavor 2007; Ritter 

2009).  Usually, expert skills are needed to construct computational models.  

Additionally, computational models when expressed as computer programs are not 

easily understood by other persons than the person who writes the program.  It is 

relatively difficult for group members, especially novice learners, to share computer 

models they have created.  In an educational context, this problem is crucial.   

Almost all production system architectures available have been developed as 

research tools for expert users.  There are some trials to improve the usability of models.  

One approach is to develop higher-level languages that may be easily used by novice 

users.  Usually compilers that translate such higher-level languages into the 

representations of the established architecture models such as Soar and ACT-R are also 

developed.  One of the earliest trials is TAQL (Yost 1993); and many languages have 

been established.  Ritter and his colleagues reviewed recent trials, and indicated that 

those languages actually successfully shorten the time of model construction (Ritter et al. 

2006).  COGENT is another trial (Cooper 2002).  COGENT is a computational 

modeling environment within which information processing models of cognitive 

processes have been developed with a graphical user interface.  It has several features 

that simplify the processes of creating cognitive models and ease the difficulty of 



reading computer models.  They are still technical systems for experts and relatively 

difficult for novices to use.   

There are some preliminary trials on the education of novice learners in 

computational cognitive modeling (e.g., Sewart 2004).  One educational system 

developed in this context for novices is Hank, a visual programming environment for 

cognitive modeling (Collins and Fung 2002).  Hank was developed for undergraduate 

students; and it basically consists of the spreadsheet-based database and the retrieval 

mechanisms using cue information.  Hank simulates just memory retrieval processes 

rather than problem solving processes, and is used for having learners understand basic 

cognitive theories such as the schema theory.  Therefore, it is not useful to let users 

reflect their cognitive processing.   

Many cognitive science classes worldwide are dealing with the issues of 

cognitive modeling.  However from the above difficulties, it seems that not so many 

classes exist where participants actually construct running computer models and 

experience such excitement and effectiveness.   

There is another practical difficulty from the viewpoint of teachers.  One big 

practical obstacle is how to construct an educational environment.  Usually, the 

behavior of each type of cognitive architecture depends on a lower computer platform 

than that on which the architecture has been installed.  It is no pleasure to install 

cognitive architecture into many computers for class practice.   

To overcome such difficulties, we developed a web-based production system 

architecture called DoCoPro, which is a nickname taken from a Japanese phrase that 

means a production system for anywhere.  Our architecture has been developed 

especially for novice users.  Therefore our architecture provides novice learners with a 

graphical user interface directly manipulated and multiple learning support that reduces 



the difficulties that emerge in the process of programming.  Learners can use DoCoPro 

whenever and from anywhere with access to the Internet.  Our system can be used on a 

web browser without any specific software.  Instructors are completely released from 

the frustration of preparing an educational environment.   

Interaction design for learning cognitive modeling 

Another big issue for learning by creating cognitive models is instructional design.  

Recently, in learning sciences, collaborative learning has taken a central role as the 

standard design for learning.  In learning activities, learners are not given knowledge by 

teachers, but construct knowledge by themselves through collaborative activities among 

learners.  Therefore interaction design is a crucial issue in computer supported 

collaborative learning (CSCL).  Interaction design is defined as design of learning 

environments such as learning materials, learning systems, instructors, and group 

construction of participants, for activating interaction of participants for constructive 

learning.  Multiple guidelines and methods for the interaction design have been 

proposed (Gros 2001; Strijbos 2004; Isotani 2009).   

One of the key factors for successful collaborative learning is the idea that the 

differentiation of knowledge among learners gives them the cues to accept other 

members’ knowledge, and promotes their learning activities.  For example, in jigsaw 

learning (Aronson and Patnoe 1996), first, expert groups are constructed within which 

all participants focus on and learn a piece of specific knowledge becoming experts on it.  

Then the jigsaw groups are reconstructed such that the participants in the expert groups 

are rearranged.  Various experts are involved in each new jigsaw group and the 

participants promote learning while unifying various kinds of knowledge through 

interacting with other experts of other domains.  The jigsaw method has been widely 

accepted in the learning science community (Miyake and Shirouzu 2006).  Additionally, 



it has been confirmed that not only the differentiation of knowledge of community 

members but also the heterogeneity of learning materials function well in CSCL (Fidas 

et al. 2005).  In jigsaw learning, participants notice the incompleteness of their 

knowledge through interaction with other expert members, and try to accept other 

members’ perspectives and knowledge, causing active interaction.  In our approach, we 

intend to bring about this type of activation for interaction in learning cognitive 

modeling by overcoming some difficulties mentioned later.   

Heterogeneity of knowledge and materials available can be expected to motivate 

and necessitate interaction among members.  However, heterogeneity does not 

necessarily bring about the necessity and sufficiency of effective learning.  Learners 

may face difficulties in referring to other members’ knowledge.  They do not know who 

has the most helpful knowledge.  Knowledge awareness is a central issue in successful 

collaborative learning (Dourish and Bellotti 1992; Ogata and Yano 2000).   

In learning cognitive models, this kind of activity corresponds to the activities in 

which participants learn the advantages of others’ models and, based on the 

understanding of differences between their own model and others’ models, revise their 

own model to remove its disadvantages.  However, it is quite difficult for novices to 

compare their model with others’ models directly.  Novice learners suffer from reading 

program codes that have been written based on the framework of the production system, 

and feel difficulty to understand knowledge as represented in codes, which we have 

already referred to as a problem with the utility of models.   

Learning through intermediate problems 

We address these difficulties by proposing an innovative instructional design called 

“learning through intermediate problems”.   



Nature of Learning through intermediate problems 

In the class activities, a learning context is created where interaction among class 

members emerges naturally in the learning processes, and participants are guided to 

learn cognitive modeling in a social context.  Figure 1 shows the concept of LtIP 

(learning through intermediate problems).  Each learner constructs a cognitive model, 

and also poses a problem that his/her model can solve.  Each problem is opened to the 

other members.  This means that each learner acts not only as a problem solver but also 

as a problem poser.   

 

Figure 1: Concept of learning through intermediate problems. 
 

Each participant has his/her model solve the problems posed by the other 

members.  The differences between his/her own model and the other models are 

recognized while solving various problems from others.  Knowledge for solving each 

problem is incorporated in each model; therefore participants are naturally guided to 

become aware of the differentiation of knowledge incorporated in the models created by 



their group members.  For instance, when one model cannot solve a certain problem, the 

participant knows that the knowledge incorporated in another model that is able to solve 

the problem is absent from his/her model.  The incompleteness of his/her model 

emerges by solving the problems given by the other members.  It has been confirmed 

that the feedback of negative information telling incompleteness and inadequacy 

improves the performance of learning and discovery.  LtIP is an instructional 

framework for generating the interaction through which this kind of negative 

information naturally emerges.  Improving a model means making up for the differences 

among the models.  LtIP generates interaction among the cognitive models through a 

problem as a mediator, overcoming the difficulties in making direct comparisons among 

models.   

There are several specific factors in LtIP.  First, interaction emerges through 

intermediate objects, i.e., problems in this case.  Participants do not interact with each 

other directly.  Interaction occurs implicitly not explicitly (Hansen et al., 1999).  We 

tested the utility of this learning design in our university classes reported in the 

following.  In the situation, the participants simultaneously learn in an identical 

classroom.  However, the participants’ interaction occurring in the classroom is not 

synchronous but asynchronous, meaning that each participant tries to solve problems 

that were posed by other participants in advance.  The similar situation could be 

established by a set of problems that were provided by an instructor.  However, in LtIP, 

a natural context of competition and interaction emerges by mutually solving the 

problems posted by the group members.   

Related studies 

There are some trials in which problem-posing activities were brought about in 

educational contexts.  Hirashima and his colleagues developed a learning environment, 



called MONSAKUN, where learners generate arithmetic word problems by selecting 

and ordering simple short-unit sentences (Hirashima et al. 2008; Hirashima et al. 2011).  

The participants voluntarily engaged in problem posing in a real class setting.  The 

results showed that their system improved the problem solving abilities of lower 

performance students.   It has been demonstrated that problem posing is effective 

especially in mathematics education (Ellerton 1986; Silver & Cai 1996; English 1997); 

however, it has also been indicated that participants tend to generate only standard 

prototype problems (Kojima & Miwa 2010).  Kojima and Miwa developed a learning 

environment that enables learners to generate a variety of problems by systematically 

presenting problem examples (Kojima & Miwa 2008).  These approaches basically 

focused on problem posing.  On the other hand, in LtIP, problem-posing is a secondary 

activity.  LtIP intends that problems function as a mediator for interaction through 

which participants’ cognitive models are improved.   

In computer science education, problem construction activities were also 

introduced.  Gotel developed a pedagogical approach where students formulate 

problems, code programs for solving the problems, and contribute their programs with 

test cases to an open source web-based system, WebWork (Gotel 2008).  Even when the 

problem topics taken by the participants were relatively restricted, it was expected that 

the participants would more carefully test their programs with test cases because they 

expected that their programs would be re-used by other members in the group, maybe 

imagining various situations in which the programs would be used.  In their approach, 

the main focus was on problem formulation and program coding activities.  There was 

no feedback phase in which initial programs were reconstructed through interaction 

with others, whereas in the LtIP program, reconstruction caused by interaction with 

other programs through intermediate problems was mainly focused on.   



The above approach basically focused on the improvement of participants’ 

programming skills.  On the other hand, LtIP intends to have participants learn 

reflective thinking and understand deeper domain knowledge.  Biswas and his 

colleagues developed a learning environment in which participants created a concept-

map-based model of a learning domain.  The participants did so by teaching a teachable 

agent, called BETTY (Biswas et al. 2005; Biswas et al. 2010).  Schwarts and his 

colleagues defined two types of meta-cognition: self-directed meta-cognition and other-

directed meta-cognition (Schwarts 2009).  They pointed out that it is usually difficult for 

naïve students to engage in meta-cognitive activities because participants must engage 

in dual tasks: problem solving activities on the cognitive level and monitoring and 

controlling activities on the meta-cognitive level.  The other-directed meta-cognitive 

activity is useful because each of the dual tasks may be assigned to either a participant 

or a teachable agent; participants can concentrate only on meta-cognitive activities.  

Learning by teaching is effective in acquiring domain knowledge with active meta-

cognitive activities.  However, this approach is performed based on the “learning by 

teaching” framework.  On the other hand, in creating cognitive models in LtIP, 

participants constitute their cognitive model, directly monitoring their own mental 

processing and problem solving processes.   

Beginners are usually required to construct a basic cognitive model that solves a 

simple example problem in the initial stage of learning to understand the grammatical 

structures and the semantics of the programming language.  It usually takes a long time 

to acquire technical skills for cognitive modeling; therefore, learners are forced to 

engage in difficult practice requiring much patience in the introductory phase of 

learning.  A similar problem was pointed out in creating intelligent tutoring systems.  

Koedinger and his colleagues proposed “Pseudo Tutors” in which programmers encode 



abstract procedural programs rather than production rules to reduce such time-

consuming training for coding AI programming (Koedinger 2004).  They successfully 

shorten the time for creating tutoring systems.  However, the abstract level of 

knowledge is crucially limited in such programming so that developers have to 

explicitly code an individual procedure to respond to every specific situation.  This 

limitation is crucial in our learning contexts; therefore, we try to have participants 

encode production rules, and LtIP was introduced to overcome the difficulties.   

Cognitive modeling has been widely approved of as a strong research tool for 

exploring the human mind.  However, there are not many empirical studies for 

understanding what modelers as learners acquire by creating cognitive models.  

Experience in constructing cognitive models is expected to facilitate various aspects of 

learning: e.g., the acquisition of programming skills, learning of psychological mental 

processes, and an understanding of the domain knowledge.  It is important to distinguish 

learning by creating cognitive models from learning of creating models.  When we use 

cognitive modeling as an educational tool, the former learning is a central issue.  The 

latter is important for cognitive science major students, but not for non-major and naïve 

students.  Learning of programming skills is involved in the latter while understanding 

of the nature of human information processing and deepening of understanding in a 

learning domain are involved in the former.  In this paper, we investigate multiple 

aspects of effectiveness of “learning by creating cognitive models” using log analysis, a 

questionnaire, and a posttest.   

DoCoPro: Production System for Anywhere 

Our system is called DoCoPro, which is a web-based production system based on the 

server and client model.  Since DoCoPro can be flexibly utilized in various learning 



environments, teachers can easily introduce the system into classes. Learners can use it 

just by accessing the server through such standard web browsers as IE (Windows), 

Safari (Macintosh), and Firefox (various OSs).  DoCoPro can be used without any 

preparation such as installing the architecture itself and related sets of software because 

the architecture runs on a web browser.  Practically, this has a big impact in real 

educational settings. In addition, since the server handles most of the information 

processing and the web browser on the client’s computer only handles the operation of 

the user interface, such as user operations and screen displays, even low performance 

old personal computers can also be used.  Therefore, our system can be used in various 

types of classroom, such as computer rooms in which both old and new personal 

computers co-exist and standard classrooms into which private notebook computers, 

whose operating systems and information processing performances are largely different, 

are brought. 

Managing data in a unified manner using its database is one of the most 

important features of DoCoPro. Since each user's individual circumstance is held in the 

server by the login mechanism with password authentication, he/she can engage in 

continuous learning in individualized study at home after learning in school under 

identical learning circumstances.   

On the production system architecture, procedural knowledge is implemented as 

production rules and declarative knowledge is stored in working memory.  To construct 

a cognitive model, modelers formalize their knowledge as if-then rules, and confirm that 

successive applications of the rules transfer the working memory from the initial to the 

goal state.  Therefore, the cycle of rule construction, rule execution, and rule editing is a 

central activity in cognitive modeling.  The synopsis nature of the viewed screen has 

been stressed in the design of the system interface. All information is displayed in a 



single window (see Figure 2). The production rules displayed on the right side of the 

window can be directly manipulated (e.g., editing, inserting, deleting, and sorting) 

without a text editor. The left-center controller button forwards inferences promptly 

during editing.  System messages, such as learning support information explained in the 

following, are displayed in the left-lower window. The contents of the working memory 

are updated by developing the inferences.  DoCoPro does not distinguish the editing 

mode where rules are edited and the execution mode where rules are performed. This 

feature simplifies debugging rules and decreases the cognitive load of learners.   

 

 

  

 

 

 

 

 

 

 

 

Figure 2: Screen shot of DoCoPro interface.   
 

The online modification function enables users to make steady progress when 

developing inferences in a step-by-step manner. Online modification provides users 

with flexible rule editing; i.e., users can edit each rule while temporally stopping the 

inference process, and restart the inference from the step after editing is completed. 



DoCoPro can also retrace the inference process to any preceding step. This process 

management and the functions for flexible rule editing mentioned above enable learners 

to edit rules whenever they discover errors, and restart the inference from any step.   

One learning support feature of our system is the presentation of hints that 

assists understanding of the recognize-act cycle of the production system, which 

includes rule matching with variable bindings, conflict resolution, and rule execution.  

The hint presentations have two functions: one indicates the candidate rules that can fire 

(activated by the "Check All" button in Figure 2), and the other provides detailed 

information about the matching status of the rules and the working memory (activated 

by the "magnifying glass" button displayed beside each rule in Figure 2).  See Nakaike, 

et al., 2009a and  Nakaike, et. al., 2010b for the detailed explanation and empirical 

evaluation of the utility of this hint presentation mechanism.   

Class Practice 1 

We designed and performed introductory cognitive science classes based on LtIP with 

DoCoPro, and discuss the utilities of the instructional design for learning cognitive 

modeling based on the class practice.  A part of Practice 1 was already reported in Miwa 

et al. (2009) and Morita et al. (2009).   

Task and participants 

The task used in our class activities was pulley systems. The reason for using pulley 

systems is that many types of problem can be considered in which the perceptual 

features of problems and problem structures can be independently manipulated.  The 

subjects and the cognitive models to be constructed are based on Larkin and Simon 

(1987).  Figure 3 shows an example pulley problem and the knowledge required for 



solving the problem.   

      

Figure 3: An example problem with its working memory representation and an example 

piece of knowledge for solving the problem.   

 

Two classes participated in our practice.   

• Class A: Eighteen liberal arts undergraduates without advanced programming 

skills.   

• Class B: Fourteen information science graduate students.  Some had experience 

with computer programming; however none had learned list-processing-type 

computer programming such as LISP and Prolog.   

Class activities 

Our practice was performed in a series of cognitive science introductory courses.  The 

following is an overview of our class activities.  Interaction among the participants 

emerged based on the LtIP schema presented in Figure 1.  Almost all participants did 



not only engage in the task in the classroom but also outside of the class such as 

homework using DoCoPro accessed by the Internet.   

• Introduction: A lecture on the basics of production system modeling was given 

to the participants.  They received a simple pulley problem and were instructed 

to construct a production system model that solves the problem.   

• Constructing Initial Models: All participants were required to generate an 

original pulley problem and to construct a cognitive model to solve a problem 

they had generated by themselves.  The models constructed in this earlier stage 

are called initial models.   

• Constructing Problem Set: The generated problems were collected, and a set of 

problems was created.  The problem set consisted of 14 problems in Class A and 

15 problems in Class B.    

• Initial Model Challenges: The problem set was distributed to the participants, 

and their initial models were used to try to solve the problems.  The solved and 

unsolved problems were identified for each of the initial models.   

• Constructing Revised Models and Challenges: The participants were required to 

improve their initial models by having their models solve as many problems as 

possible.  The improved models are called revised models.  The revised models 

were again used to try to solve the problems of the problem set, and the solved 

and unsolved problems were identified.  

• Final Task: In the final stage of the class, the participants constructed original 

models.  The participants could select a final task by themselves.  Some might 

select it from a cognitive science textbook, and others might focus on a familiar 

topic from daily life.  For example, the Rubik’s Cube, the Missionaries and 

Cannibals Problem, and the Three Prisoners Problem were chosen as problems 



for the final task.  The important point is that they chose a relatively complex 

task as a final task.  The means of the numbers of rules are 10.3 in the initial 

models, 24.8 in the revised models, and 45.1 in the final models, supporting that 

the complexity of models increased from the initial to final models.  The most 

complex model contained 170 rules and completed the six sides of the Rubik’s 

cube in about 1000 steps.   

In the introduction of the problem generation phase, a teacher gave the 

participants the following instruction: generate a possible difficult problem that your 

model can solve but other members cannot solve.  This context brought about a 

competitive situation in the class activities.  As they tried to generate a more difficult 

problem to beat the others, they had to create a higher performance model that could 

solve such a difficult problem of their own.  Basically, the participants were not 

instructed to create sophisticated models; however, such a competitive setting guided 

them to do so. This setting naturally produces interaction among the participants and 

increases their motivations to construct sophisticated models.   

Overall Results 

Collected Problems 

In Class A, some of pairs of the participants collaboratively proposed one single 

problem.  In Class B, one of the participants proposed an invalid problem.  As a result, 

14 problems in Class A and 15 problems in Class B were collected.  The problems 

collected were grouped into three categories: simple problems, specific problems, and 

difficult problems.  Figure 4 shows example problems.   



 

    (a) Simple problem             (b) Specific problem            (c) Difficult problem 

Figures 4: Example problems in problem set.   
 

• Simple Problems: These problems were solved using a set of basic knowledge, 

such as the two forces acting on two ropes hanging with a pulley are identical; 

the force pulling up the pulley is identical to the sum of the forces of two ropes 

dragging the pulley down.    

• Specific Problems: These problems contain specific objects in the system.  In the 

example problem in Figure 4(b), there is a rod connecting two of the pulleys.  

These problems are solved using specific knowledge applicable to a specific 

situation.   

• Difficult Problems: These problems are difficult to solve because each of the 

two forces acting on the two ropes supporting each weight is not calculated 

independently from the other; therefore the ratio of the two forces has to be 

inferred for problem solving.  In the specific problems, a single rule 

corresponding to a specific situation makes the solution possible; however in the 

difficult problems, multiple relatively complex rules are needed for gradual 

inferences to calculate the ratio.   

   



In Class B, seven simple, four specific, and four difficult problems were 

collected.  In Class A, twelve simple and only two difficult problems were collected; 

one invalid problem was eliminated.  The result showed that all students relatively 

easily generated pulley problems.  However, in Class A, most participants could 

generate only simple problems, whereas the participants in Class B successfully 

generated a variety of problems.  Therefore, effective problem generation may depend 

on programming skills or domain knowledge.   

Model Performance 

Figure 5 shows the mean ratios of the problems successfully solved by the initial and 

revised models to all problems, indicating that the models' performances largely 

improved in both Classes A and B.  An ANOVA showed significant differences of the 

models’ performances between the pre and post phases both in Classes A and B [F(1, 

12)=21.27, p < .01 in Class A, and F(1, 12)=118.33, p < .01 in Class B].  This supported 

the initial evidence that LtIP functioned well.  The participants were guided to be aware 

of the differences between their own models and others’, and improve their models.   

 

                (a) 

Class A                                                      (b) Class B 

Figure 5: Model Performance 
 



Compared to Class A, the improvement in performance was larger in Class B.  

As mentioned earlier, various types of problem were generated in Class B.  Therefore, 

the initial models could not solve such unseen problems; the ratio of successful problem 

solving was considerably low in the early stage.  This explains the large improvement in 

Class B.   

Types of models 

In the following, we mainly analyze the results of Class B in detail because a large 

variety of problems were collected.  Table 1 shows the combination of the revised 

models and the problems that each model could solve. "1" means a successful solution 

whereas  "0" means unsolved.  The models (vertical axis) are sorted based on their 

problem solving performance, i.e., the number of problems that the model could solve.  

The problems (horizontal axis) are categorized as simple, specific, and difficult, as 

mentioned earlier.  The overall pattern of the arrangement of “0” is gathered in the right 

lower side.  This means that the poor performance models could not solve the difficult 

problems.   

Table 1. Problems each revised model could solve.  The high performance models 
successfully solved all problems, the medium performance models solved some of the 
difficult problems, but did not solve some of the specific problems, and the low 
performance models solved none of the difficult problems.   

 



The revised models are categorized based on the solution patterns of the three 

types of problems.   

• High performance models: solved all problems successfully.   

• Medium performance models: solved some of the difficult problems, but did not 

solve some of the specific problems.   

• Low performance models: solved none of the difficult problems, but almost all 

of the specific problems.   

Table 2 shows the transition pattern from the initial to the revised models.  One 

participant did not present his initial model; therefore a total of thirteen models were 

analyzed.   

 

Table 2: Transition from initial to revised models in Class B.   

 

 

 

 

 

The table shows that no participants created high performance models, and most 

participants (10 out of 13) created low performance models in the initial phase.  Nine of 

thirteen participants improved their models: five from low to medium, one from low to 

high, and three from medium to high.  This indicates that most participants actually 

improved their models during the class activities.  In addition, the participants in Class 

A did not generate the specific problems containing specific objects.  Therefore, their 

models were categorized into two groups: low and high performance models.  All 

thirteen initial models were categorized in the low performance models; three of the 



thirteen models were moved into the high performance models.  Seven simple problems 

in Class B and twelve simple problems in Class A were generated.  In Class B, thirteen 

out of fourteen models completely solved all simple problems.  The other model could 

solve six of seven problems.  On the other hand, in Class A, seven of thirteen models 

solved all simple problems, and three models solved ten of twelve simple problems.  

However, three models could solve only half of the basic problems.  This difference 

between Class A and Class B seems to come from differences of programming skills of 

the participants.   

Detailed Analysis 

Log analysis 

To confirm the development of rule based programming skills, we analyzed the log data 

stored in the DoCoPro server.  In this analysis, requests to the server were divided into 

three manipulation types: Coding (coding of models), Step (running models), and Hint 

(viewing hints). We examined the transitions of the numbers of requests for these three 

manipulation types. 

Figure 6 shows how many requests emerged in the period of the three tasks for 

the three manipulation types in Class B. The transitions seem different for each of the 

three manipulation types. To investigate the details of the difference, a 3 (manipulation 

types (within): Coding, Step and Hint) x 3 (tasks (within): the initial task, the revised 

task, and the final task) ANOVA was conducted with the number of requests as a 

dependent measure.  The initial task means constructing initial models, the revised task 

means improving initial models and constructing revised models, and the final task 

means constructing original models that solved problems they themselves selected.   



 

 

 

 

 

 

 

Figure 6: Results of log analysis. 
 

As a result, both the significant main effects of manipulation types [F (2, 24) = 

5.28, p < .01] and tasks [F (2, 24) = 5.08, p < .01] and the significant interaction of the 

manipulation types and tasks [F (4, 48) = 3.20, p < .05] were detected. While the simple 

main effects of the tasks were significant for Coding [F (2, 24) = 5.53, p < .01] and Step 

[F (2, 24) = 3.93, p < .01], the simple main effect of the tasks was not significant for 

Hint [F (2, 24) = 1.63, n.s.]. Furthermore, multiple comparisons (LSD) confirmed the 

increase of Step from the initial to the final tasks (p < .05), and the increase of Coding 

from the initial to the revised tasks (p < .05).   

The above results reveal the characteristics of each task in the modeling 

processes.  Since the frequency of viewing hints is proportionally large in the initial task, 

the process in this task can be considered to contain many trial-and-error behaviors in 

which the participants had frequently encountered impasses. On the other hand, in the 

revised and final tasks, the participants were able to construct models without the 

support of hints. Furthermore, the manipulations in the final task, in which Step 

occupies a proportionately large space, suggest that the participants finally became able 

 



to construct complex models performing long problem-solving steps.  These results 

confirm that the participants acquired programming skills by LtIP.   

Posttest 

Next to verify the development of understandings in the learning domain  a posttest was 

performed in the final stage of the practice.   

Material 

The posttest consisted of ten pulley problems.  The problems can be categorized into 

three types from the viewpoint of their problem structures.   

• Simple Problems w/One Rope: The problems contain only weights supported by 

a single rope.   

• Simple Problems w/Two Ropes: The problems contain weights supported by 

two ropes.  However, the force acting on each rope is independently calculated; 

therefore the addition of a single relatively simple rule enables the models to 

solve such problems.  An example is the problem indicated in Figure 4(a).    

• Difficult Problems: Some of the problems collected in Classes A and B were 

defined as difficult problems.  The difficult problems used in the posttest have 

the same features as those.  An example of a difficult problem is indicated in 

Figure 4(c).  To solve the problems, the ratio of the forces acting on the two 

ropes supporting a weight must be calculated.   

The perceptual superficial characteristics of the problems, such as the number of 

pulleys involved in a problem, were manipulated independently from the problem 

structures characterizing the three types of problems.  For example, some of the 

problems contained three pulleys and others eight pulleys.   In two problems there was a 



rod, connecting the pulleys.  Though the perceptual features of these problems were 

relatively different from others, they can be solved only by a set of basic knowledge; 

therefore they are categorized into the simple problems.   

Tasks 

Two tasks were given to the participants.   

• Problem solving task: The participants were required to calculate the force 

acting on a target rope.   

• Categorization task: The participants were required to categorize ten problems 

into three categories.  In this task, the participants were instructed to gather 

similar problems in each category.  If the participants categorized the problems 

based on the problem structures, the three problem groups indicated in the 

material section were constructed.   

Result 

For the problem solving task, all participants except one accurately solved nine or more 

of ten problems, but for the categorization task, the results varied among the participants.   

Analysis of the result of the categorization task was performed excluding one 

participant whose performance of the problem solving task was extremely low.  The 

number of problems that didn't follow the normative categorization defined above was 

analyzed.  Figure 7 shows the mean number of such non-normative categorizations into 

each of the three types by the participants who constructed high, medium, and low 

performance models.  An ANOVA revealed that the main effect reached significance (F 

(2, 9)=7.25, p<0.05).  A LSD analysis showed that the numbers in the low and medium 

models were larger than that in the high model (p<0.05 and p<0.05).  The result implies 



that the participants who constructed the high performance models followed the 

normative categorization, but other participants tended to perform non-normative 

categorization.   

 

 

 

 

 

 

 

 

Figure 7: Result of Categorical Test 
 

Discussion of Practice 1 

Nature of learning through intermediate problems 

The results of the first class confirmed that the participants successfully acquired skills 

of rule-based programming, and creating a sophisticated model improved understanding 

of the domain knowledge, insisting the utilities of LtIP proposed in this current study.  

We discuss the nature of the learning design.   

It has been confirmed that the feedback of negative information improves the 

performance of learning and discovery from various perspectives such as unexpected 

findings (Dunbar 2001), surprising results (Kulkarni and Simon 1988), anomaly 

(Darden 1992), and falsifications (Miwa 2004).  In learning cognitive modeling, 

learners are also expected to acquire various types of knowledge by facing the 



limitations of their models and overcoming them.  However, people tend to collect 

positive instances consistent with their beliefs and hypotheses (Klayman and Ha 1987).  

This implies that investigating the methods of providing learners with adequate negative 

information about the limitations of their models is important.    

In the current practice, we designed class activities where interaction among the 

participants naturally emerges, and through the interaction each participant discovered 

his/her model's limitations by receiving negative information from others.  Figure 5 

shows that the performance of the revised models was drastically improved from the 

initial models.  This evidence suggests that the instructional design proposed in this 

practice functioned well.   

Understanding of learning domain 

Note that the manner of problem categorization by each of the participants was largely 

different even though the performance of the problem solving task was almost identical 

for every participant.  The result shows that the participants who constructed high 

performance models categorized problems based on the problem structures, and were 

not confused by their perceptual appearances.  Chi et al. reported that in physics, experts 

categorized problems based on the structures of problems, and novices tended to do so 

based on appearances (Chi et al. 1981).  The result of our practice indicates that the 

participants constructing high performance models successfully acquired high quality 

knowledge consistent with experts.  Note that it remains unknown whether such 

knowledge acquisition comes from the experiences of creating sophisticated models, or 

they could create high performance models because they initially understood such 

knowledge.  The investigation of such a causal relation is future work.   

As mentioned earlier, the addition of specific rules corresponding to individual 

situations makes it possible for the specific problems to be solved by the basic models.  



In general, the difficult problems needed more complex rules to be solved.  However, in 

some cases, the addition of simple rules also gave the models the ability to solve the 

difficult problems.  For example, see the example problem in Figure 4(c).  When the 

following specific rule that can be applied only to this specific situation is added to a 

basic set of knowledge, the model is able to solve this problem.   

 

If 

The relationship among the two pulleys on the left side, the leftmost weight, and the 

ropes connecting those objects shown in Figure 4(c) is detected 

Then 

Let the ratio of the forces acting on the two ropes be two to one. 

 

Actually some participants handled the difficult problems by describing such 

specific rules.  Five models could solve the difficult problems in Class B.  One of the 

five models consisted of specific local rules, each of which addressed one specific 

problem.  On the other hand, in Class A, both models that could solve the difficult 

problems consisted of such local rules.  In the current practice, no difference in 

performance in the posttest was detected between the participants who handled the 

difficult problems by adding specific knowledge and those who did so by producing 

more complex rules that could be generally applied to various situations.   From the 

viewpoint of quality of learning, the relationship between learning performance and the 

manner of representing rules is crucial.  Further investigation of this issue remains 

important future work.   



Class Practice 2 

The first class practice confirmed that LtIP functioned well for learning rule-based 

programming and understanding domain knowledge.  As mentioned in the introduction 

another important function of creating cognitive models is to activate participants’ 

reflective thinking.  To construct cognitive models, modelers have to describe human 

cognitive information processing formally.  To do so, they must monitor their own 

thinking processes. It is expected that such experiences of creating cognitive models 

lead learners to understand human cognitive information processing more deeply, and 

reflect more seriously on their own procedures for problem solving, which they were 

initially not conscious of.  To verify this point, we performed an additional class 

practice.   

Task and participants 

Tasks dealt with in the class were addition and subtraction problems.  Undergraduate 

students in Japan participating in this class routinely solve these problems.  It is 

assumed that cognitive processing for solving these tasks may be automated, and it may 

be difficult for them to verbalize and externalize the cognitive processing occurring in 

the mind (Ericsson and Simon 1980).  Therefore, the tasks are suitable to confirm the 

effects of introspective activities.  Additionally, it has been confirmed that the mental 

procedures in the tasks were suitable for production system modeling, and naturally 

well formalized based on the rule based description (Brown and Burton 1978; Young 

and O’Shea 1983).   

Eighteen participants joined the second class practice.  To confirm the effect that 

creating cognitive modeling actually activates the participants’ reflective activities, we 

asked the participants to complete a questionnaire to describe what they felt was learned 



through constructing cognitive modeling.  More concretely, the participants were given 

an instruction, “describe what was learned through creating cognitive models for the 

classes,” and were required to answer the instruction in the questionnaire.   

Class activities 

The production system used in the class practice was identical to DoCoPro used in Class 

A and Class B.   

• Introduction: In the class practice, intended initially for learning the basics of 

production system modeling, a model for performing an addition problem was 

constructed using the learning material.   

• Simple problem solving: Subsequently the main learning phases followed.  First 

they constructed a basic model for solving a simple subtraction problem, and 

then created a more complex model for solving a subtraction problem in which 

carry information must be processed to achieve a solution because the upper 

digit is smaller than the lower digit in a certain column.   

• Complex problem solving: Finally, they were given a more difficult problem in 

which a digit in the upper row in a certain column was zero therefore carry 

information had to be repeated from the leftmost column.  The following is an 

example problem.   

  20000 

 —10001 

   

Results 

The following is the analysis of the questionnaires answered by the 18 participants.  The 



contents of the answers were grouped into five categories.   

(a) Reflective thinking on their own cognitive processing (9 among 18) 

• Example 1: I understood how I usually perform addition and subtraction 

problems in my mind.  I am very surprised that we can describe information 

processing in our brain accurately by using this production system.   

• Example 2: Until now I have not been conscious of the ways I solve subtraction 

problems in my mind.  Through constructing cognitive models, I have become 

aware of the procedures I use for calculation.   

(b) Finding of complex and sophisticated information processing behind simple 

problem solving (8 among 18) 

• Example 3: Usually we perform addition and subtraction problems without 

serious effort.  I have noticed, however, that we do so thorough many complex 

steps in a process while drawing needed information from our memory.   

• Example 4: What I learned by creating actual cognitive models is that even 

when solving simple calculation problems, information processing is performed 

in our mind through unexpectedly difficult processes.   

(c) Noticing of the superiority of human cognitive processing and the limitations of 

production system models.  (9 among 18) 

• Example 5: Production system models basically can use only one fixed strategy.  

But humans can flexibly select one of multiple strategies according to the 

context.   

• Example 6: This is the most essential difference between production system 

processing and our information procedures.  … The fact that perception is 



behind every act of cognitive processing is entirely a new finding discovered by 

using the production system in this class.   

(d) Pointing out essential differences between human and machine information 

processing, expressing negative impressions about the cognitive modeling approach. (4 

among 18) 

• Example 7: I feel that what we do in our minds when solving problem is neither 

theoretic nor systematic.  I think that humans behave more intuitively.   

(e) Discovering new innovative information processing that is different from the 

ordinary procedures performed in dairy life.  (2 out of 18) 

• Example 8: I tried to find another way of solving the problem of modeling that 

was different than my usual way of doing so while thinking about various 

models. … As a result, I was able to find an innovative way of solving the 

problem.  I think that this new way of finding a solution comes from the 

experience of understanding visually the process of thinking by using 

information processing models.   

The descriptions categorized in (a) and (b) show evidence that the participants 

actually performed reflective activities while monitoring their own internal information 

processing.  The descriptions in (c) imply that they learned the nature of human 

information processing more deeply through such activities.  The above results indicate 

that most participants experienced such learning processes.  On the other hand, there 

were some, but not so many, participants who gave impressions that we had not 

expected.  The result in (e) is an unexpected but interesting result, and is discussed in 

detail later.   



Discussion of Practice 2 

There are three levels of learning in the learning from cognitive modeling: learning of 

programming, understandings of a learning domain, and findings on human cognitive 

processing.  The first and second levels of learning, i.e., learning of programming and 

understanding of a learning domain, were supported by the log analysis and the posttest 

as reported in Practise 1.  In the following, we discuss in detail the third level of 

learning based on the questionnaire.   

The result of the questionnaire showed that most participants learned to reflect 

on their own cognitive information processing, and more generally discovered the 

superiority of human intellectual mental processing based on their experiences of 

cognitive modeling.  As mentioned in the introduction section, such meta-cognitive 

activities activate learning, and there are a variety of trials to activate the learning 

processes by utilizing such meta-cognitive activities (Chi et al. 1989, 1994; Renkl 1997; 

Renkl et al. 1998; Pirolli and Recker 1994; Aleven and Koedinger 2002; Conati and 

Vanlehn 2000).  The above results imply that constructing cognitive models has the 

possibility of directly activating such meta-cognitive activities.   

Most participants encoded the procedures for subtraction that they had learned in 

their elementary school.  The procedures include complex rules such as “if the upper 

number is less than the lower number in a processing column, shift attention to the left 

column, decrement the upper number in the focused-on column by one, and add ten to 

the upper number in the processing column,” and “if the upper number in a focused-on 

column equals 0, then shift attention to the next left column, decrement the upper 

number in the focused-on column by one, shift attention back to the right, and add ten to 

the upper number in the focused-on column.  However, some of the participants 

constructing the subtraction problems discovered a new procedure for subtraction while 



constructing cognitive models.  In the questionnaire, two participants actually 

mentioned such a new finding.  The new procedure is as follows.   

 

If  

A column is processed 

The answer slot in the column is empty (i.e., the answer has not been obtained in the 

column) 

The digit in the upper row is smaller than the digit in the lower row in the column (i.e., 

impossible to perform the subtraction in the column) 

Then 

Add ten to the digit in the upper row in the current column 

Add one to the digit in the lower row in the left column.   

 

This procedure is not taught in Japanese schools; actually no participants knew 

this procedure before they participated in the class.  To solve the example problem 

including zeros in the upper rows presented above, multiple complex rules are needed.  

On the other hand, the above procedure is very simple and sophisticated.  If this single 

procedure is added to the basic rule set, the model can completely solve such kind of 

advanced problems.  We should note that from the viewpoint of elementary education 

where acquiring the concept of the decimal system is a principal issue of calculation, 

there may be disadvantages in using this procedure.  Anyway, this finding is interesting 

because discovering this procedure was brought about by the situation where the 

participants are forced to describe the calculation procedures formally based on the 

production system description.  In the introduction section, we pointed out three 



advantages of cognitive modeling.  This finding may relate to “serendipity and 

emergence” as the third advantage.   

Conclusions 

The authors developed a web based production system for novice learners called 

DoCoPro.  Using the system, we designed a class practice based on LtIP.  In the final 

stage of the class practice, almost all participants successfully created relatively 

complex sophisticated models.   

This result implies that LtIP functioned well as a learning design for teaching 

cognitive modeling.  The log analysis showed that the participants learned the skills of 

programming for cognitive modeling using DoCoPro.  They tried to monitor and reflect 

on their thinking processes to identify the cognitive processing taking place in their own 

minds; from these activities they learned some important aspects of human information 

processing.  The participants who created more sophisticated models successfully 

understood the problem structures in the learning domain.  However whether this 

advantage comes from the learning activity or their initial knowledge is unclear; to test 

this point is the most important future work.   

The limited improvement of the models in Class A was observed.  Our 

interaction design, LtIP, tells the participants the incompleteness of their models, and 

gives cues and criteria for the revisions, but does not give knowledge for improving the 

models.  The participants had to find ways of model revision.  Some liberal arts 

undergraduates without advanced programming skills noticed problems with their 

models but might not have known how to improve their models because of the lack of 

programming skills.  Our interaction design was not intended to teach the participants 

programming skills directly; such programming skills were taught prior to the 



interaction phase.  To let LtIP function better for naïve students who are not 

knowledgeable about programming, we need to develop systematic ways to combine 

LtIP and such a programming learning environment.   

It is important to distinguish learning by creating cognitive models from learning 

of creating models.  The latter is important for cognitive science major students, but not 

for non-major and naïve students.  We intended, by the phrase learning by creating 

cognitive models, that we use cognitive modeling as a tool to promote learning.  

Creating cognitive models is not the objective but a means for learning.  Acquiring 

programming skills is very important for learning of cognitive modeling.  A log analysis 

supported the development of the participants’ programming abilities.  However, this 

improvement is not sufficient for learning by creating models.  To verify the utility of 

cognitive modeling as a learning tool, we also confirmed whether the participants 

successfully experienced monitoring their own mental processing, learned 

psychological processing, and understood domain knowledge.  A posttest for an 

understanding of domain knowledge in Practice 1 and a questionnaire for learning of 

psychological mental processing in Practice 2 confirmed our expectations, supporting 

the possibility of learning by creating cognitive models.   

Last let us summarize the novelty of LtIP as an instructional design of CSCL.  

LtIP provides a learning environment for implicit and asynchronous interaction among 

participants in which negative feedback that tells the incompleteness of each model 

makes differences of the models clear.  A problem posed by each participant is a key 

factor, because it works as a mediator for causing such interaction.  In LtIP, participants 

are naturally guided to generate as original problems as possible in a competitive 

situation of class activities.  They also have a responsibility as inventors of original 

problems by checking if their own computational models can solve their proposed 



problems.  LtIP guarantees such originality and integrality in problem posing, resulting 

the successful class practices.   
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